考察两个事物(在数据里我们称之为变量)之间的相关程度。如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:
(1)、当相关系数为0时,X和Y两变量无关系。
(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。
(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。
通常情况下通过以下取值范围判断变量的相关强度:
相关系数 0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关
首先放上公式:
公式定义为: 两个连续变量(X,Y)的pearson相关性系数(Px,y)等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX,σY)。系数的取值总是在-1.0到1.0之间,接近0的变量被成为无相关性,接近1或者-1被称为具有强相关性。
def pearson(vector1, vector2):
n = len(vector1)
#simple sums
sum1 = sum(float(vector1[i]) for i in range(n))
sum2 = sum(float(vector2[i]) for i in range(n))
#sum up the squares
sum1_pow = sum([pow(v, 2.0) for v in vector1])
sum2_pow = sum([pow(v, 2.0) for v in vector2])
#sum up the products
p_sum = sum([vector1[i]*vector2[i] for i in range(n)])
#分子num,分母den
num = p_sum - (sum1*sum2/n)
den = math.sqrt((sum1_pow-pow(sum1, 2)/n)*(sum2_pow-pow(sum2, 2)/n))
if den == 0:
return 0.0
return num/den
现在,用两个向量测试一下:
vector1 = [2,7,18,88,157,90,177,570]
vector2 = [3,5,15,90,180, 88,160,580]
运行结果为0.998,可见这两组数是高度正相关的。