机器学习(二)---决策树算法学习

目录

前言

ID3 算法

C4.5 算法

CART


前言

决策树(decision tree):是一种基本的分类与回归方法。

在分类问题中,表示基于特征对实例进行分类的过程,可以认为是 if-then 的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。

决策树学习的目标:根据给定的训练数据集构建一个决策树模型,使它能够对实例进行正确的分类

决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪

同时 我们接下来还需要了解 熵,条件熵,信息增益,信息增益比,基尼指数  这些概念

决策树由下面几种元素构成

  • 根节点:包含样本的全集
  • 内部节点:对应特征属性测试
  • 叶节点:代表决策的结果

机器学习(二)---决策树算法学习_第1张图片

决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程

 划分数据集的最大原则是:将无序的数据变得更加有序

被选中的维度的特征具体在哪个值上进行划分呢?

接下来 我们将实现以下3种方法

ID3 算法

ID3 是最早提出的决策树算法,他就是利用信息增益来选择特征的。

C4.5 算法

他是 ID3 的改进版,他不是直接使用信息增益,而是引入“信息增益比”指标作为特征的选择依据。

CART(Classification and Regression Tree)

这种算法即可以用于分类,也可以用于回归问题。CART 算法使用了基尼系数取代了信息熵模型

机器学习(二)---决策树算法学习_第2张图片

使用决策树做预测需要以下过程

收集数据:可以使用任何方法。比如想构建一个相亲系统,我们可以从媒婆那里,或者通过参访相亲对象获取数据。根据他们考虑的因素和最终的选择结果,就可以得到一些供我们利用的数据了。
准备数据:收集完的数据,我们要进行整理,将这些所有收集的信息按照一定规则整理出来,并排版,方便我们进行后续处理。
分析数据:可以使用任何方法,决策树构造完成之后,我们可以检查决策树图形是否符合预期。
训练算法:这个过程也就是构造决策树,同样也可以说是决策树学习,就是构造一个决策树的数据结构。
测试算法:使用经验树计算错误率。当错误率达到了可接收范围,这个决策树就可以投放使用了。
使用算法:此步骤可以使用适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。

如何构造一个决策树

def createBranch():
'''
此处运用了迭代的思想。 感兴趣可以搜索 迭代 recursion, 甚至是 dynamic programing。
'''
    检测数据集中的所有数据的分类标签是否相同:
        If so return 类标签
        Else:
            寻找划分数据集的最好特征(划分之后信息熵最小,也就是信息增益最大的特征)
            划分数据集
            创建分支节点
                for 每个划分的子集
                    调用函数 createBranch (创建分支的函数)并增加返回结果到分支节点中
            return 分支节点

后面算法使用的数据集(泰坦尼克号)

机器学习(二)---决策树算法学习_第3张图片

 机器学习(二)---决策树算法学习_第4张图片

数据集:cystanford/Titanic_Data: Titanic乘客生存预测 (github.com)

ID3 (信息增益)算法

ID3算法的核心是在决策树各个节点上应用信息增益准则来选择特征,递归的构建决策树。 具体方法是:从根节点开始,对节点计算所有可能的特征的信息增益,选择信息增益最大的特征作为节点的特征,由该特征的不同取值建立子节点:再对子节点递归的调用以上方法,构建决策树:直到所有的特征信息增益均很小或没有特征可以选择为止。

公式

机器学习(二)---决策树算法学习_第5张图片

 根据此公式计算经验熵H(D),分析贷款申请样本数据表中的数据。最终分类结果只有两类,即放贷和不放贷。根据表中的数据统计可知,在15个数据中,9个数据的结果为放贷,6个数据的结果为不放贷。所以数据集D的经验熵H(D)为:

def calcShannonEnt(dataSet):
    #返回数据集行数
    numEntries=len(dataSet)
    #保存每个标签(label)出现次数的字典
    labelCounts={}
    #对每组特征向量进行统计
    for featVec in dataSet:
        currentLabel=featVec[-1]                     #提取标签信息
        if currentLabel not in labelCounts.keys():   #如果标签没有放入统计次数的字典,添加进去
            labelCounts[currentLabel]=0
        labelCounts[currentLabel]+=1                 #label计数

    shannonEnt=0.0                                   #经验熵
    #计算经验熵
    for key in labelCounts:
        prob=float(labelCounts[key])/numEntries      #选择该标签的概率
        shannonEnt-=prob*log(prob,2)                 #利用公式计算
    return shannonEnt                                #返回经验熵

计算出熵值

信息增益

信息增益是相对于特征而言的。所以,特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即

信息增益 = entroy(前) - entroy(后)

 代码如下

from math import log
import operator


def calcShannonEnt(dataSet):
    #返回数据集行数
    numEntries=len(dataSet)
    #保存每个标签(label)出现次数的字典
    labelCounts={}
    #对每组特征向量进行统计
    for featVec in dataSet:
        currentLabel=featVec[-1]                     #提取标签信息
        if currentLabel not in labelCounts.keys():   #如果标签没有放入统计次数的字典,添加进去
            labelCounts[currentLabel]=0
        labelCounts[currentLabel]+=1                 #label计数

    shannonEnt=0.0                                   #经验熵
    #计算经验熵
    for key in labelCounts:
        prob=float(labelCounts[key])/numEntries      #选择该标签的概率
        shannonEnt-=prob*log(prob,2)                 #利用公式计算
    return shannonEnt                                #返回经验熵

def createDataSet():
    # 数据集
    dataSet=[[0, 0, 0, 0, 'no'],
            [0, 0, 0, 1, 'no'],
            [0, 1, 0, 1, 'yes'],
            [0, 1, 1, 0, 'yes'],
            [0, 0, 0, 0, 'no'],
            [1, 0, 0, 0, 'no'],
            [1, 0, 0, 1, 'no'],
            [1, 1, 1, 1, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [2, 0, 1, 2, 'yes'],
            [2, 0, 1, 1, 'yes'],
            [2, 1, 0, 1, 'yes'],
            [2, 1, 0, 2, 'yes'],
            [2, 0, 0, 0, 'no']]
    #分类属性
    labels=['年龄','有工作','有自己的房子','信贷情况']
    #返回数据集和分类属性
    return dataSet,labels

def splitDataSet(dataSet,axis,value):
    #创建返回的数据集列表
    retDataSet=[]
    #遍历数据集
    for featVec in dataSet:
        if featVec[axis]==value:
            #去掉axis特征
            reduceFeatVec=featVec[:axis]
            #将符合条件的添加到返回的数据集
            reduceFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reduceFeatVec)
    #返回划分后的数据集
    return retDataSet

def chooseBestFeatureToSplit(dataSet):
    #特征数量
    numFeatures = len(dataSet[0]) - 1
    #计数数据集的香农熵
    baseEntropy = calcShannonEnt(dataSet)
    #信息增益
    bestInfoGain = 0.0
    #最优特征的索引值
    bestFeature = -1
    #遍历所有特征
    for i in range(numFeatures):
        # 获取dataSet的第i个所有特征
        featList = [example[i] for example in dataSet]
        #创建set集合{},元素不可重复
        uniqueVals = set(featList)
        #经验条件熵
        newEntropy = 0.0
        #计算信息增益
        for value in uniqueVals:
            #subDataSet划分后的子集
            subDataSet = splitDataSet(dataSet, i, value)
            #计算子集的概率
            prob = len(subDataSet) / float(len(dataSet))
            #根据公式计算经验条件熵
            newEntropy += prob * calcShannonEnt((subDataSet))
        #信息增益
        infoGain = baseEntropy - newEntropy
        #打印每个特征的信息增益
        print("第%d个特征的增益为%.3f" % (i, infoGain))
        #计算信息增益
        if (infoGain > bestInfoGain):
            #更新信息增益,找到最大的信息增益
            bestInfoGain = infoGain
            #记录信息增益最大的特征的索引值
            bestFeature = i
            #返回信息增益最大特征的索引值
    return bestFeature

def majorityCnt(classList):
    classCount={}
    #统计classList中每个元素出现的次数
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote]=0
            classCount[vote]+=1
        #根据字典的值降序排列
        sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
        return sortedClassCount[0][0]

def createTree(dataSet,labels,featLabels):
    #取分类标签(是否放贷:yes or no)
    classList=[example[-1] for example in dataSet]
    #如果类别完全相同,则停止继续划分
    if classList.count(classList[0])==len(classList):
        return classList[0]
    #遍历完所有特征时返回出现次数最多的类标签
    if len(dataSet[0])==1:
        return majorityCnt(classList)
    #选择最优特征
    bestFeat=chooseBestFeatureToSplit(dataSet)
    #最优特征的标签
    bestFeatLabel=labels[bestFeat]
    featLabels.append(bestFeatLabel)
    #根据最优特征的标签生成树
    myTree={bestFeatLabel:{}}
    #删除已经使用的特征标签
    del(labels[bestFeat])
    #得到训练集中所有最优特征的属性值
    featValues=[example[bestFeat] for example in dataSet]
    #去掉重复的属性值
    uniqueVls=set(featValues)
    #遍历特征,创建决策树
    for value in uniqueVls:
        myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),
                                               labels,featLabels)
    return myTree

if __name__=='__main__':
    dataSet,labels=createDataSet()
    featLabels=[]
    myTree=createTree(dataSet,labels,featLabels)
    print(myTree)

结果如下

机器学习(二)---决策树算法学习_第6张图片

C4.5 算法

机器学习(二)---决策树算法学习_第7张图片

def choose_best_feature(dataset):
    num_of_features = len(dataset[0]) - 1
    # 计算当前数据集的信息熵
    current_entropy = compute_entropy(dataset)
    # 初始化信息增益率
    best_information_gain_ratio = 0.0
    # 初始化最佳特征的下标为-1
    index_of_best_feature = -1
    # 通过下标遍历整个特征列表
    for i in range(num_of_features):
        # 构造所有样本在当前特征的取值的列表
        values_of_current_feature = [example[i] for example in dataset]
        unique_values = set(values_of_current_feature)
        # 初始化新的信息熵
        new_entropy = 0.0
        # 初始化分离信息
        split_info = 0.0
        for value in unique_values:
            sub_dataset = create_sub_dataset(dataset, i, value)
            p = len(sub_dataset) / len(dataset)
            # 计算使用该特征进行样本划分后的新信息熵
            new_entropy += p * compute_entropy(sub_dataset)
            # 计算分离信息
            split_info -= p * log(p, 2)
        # 计算信息增益
        # information_gain = current_entropy - new_entropy
        # 计算信息增益率(Gain_Ratio = Gain / Split_Info)
        information_gain_ratio = (current_entropy - new_entropy) / split_info
        # 求出最大的信息增益及对应的特征下标
        if information_gain_ratio > best_information_gain_ratio:
            best_information_gain_ratio = information_gain_ratio
            index_of_best_feature = i
    # 这里返回的是特征的下标
    return index_of_best_feature

可视化: 

在数据处理的时候出现了点问题  只能先用sklearn计算出结果和可视化决策树  

。。。

 

你可能感兴趣的:(机器学习,决策树,机器学习,算法)