通过train.py我们可以发现,数据读取的主要是该函数
# utils->datasets.py
def create_dataloader(path,
imgsz,
batch_size,
stride,
single_cls=False,
hyp=None,
augment=False,
cache=False,
pad=0.0,
rect=False,
rank=-1,
workers=8,
image_weights=False,
quad=False,
prefix='',
shuffle=False):
# 如果采用矩形训练 那就不能打乱
if rect and shuffle:
LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
shuffle = False
# torch_distributed_zero_first只有主线程去读取数据,其他线程等待主线程读取数据
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
# 可以看到 数据读取部分的函数 为该函数LoadImagesAndLabels
dataset = LoadImagesAndLabels(
path,
imgsz,
batch_size,
augment=augment, # augmentation
hyp=hyp, # hyperparameters
rect=rect, # rectangular batches
cache_images=cache,
single_cls=single_cls,
stride=int(stride),
pad=pad,
image_weights=image_weights,
prefix=prefix)
# 如果图片的数量少于batch_size了,那么久按照图片的数量当作batch_size
batch_size = min(batch_size, len(dataset))
nd = torch.cuda.device_count() # number of CUDA devices
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
return loader(dataset,
batch_size=batch_size,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=True,
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset
class LoadImagesAndLabels(Dataset):
# YOLOv5 train_loader/val_loader, loads images and labels for training and validation
cache_version = 0.6 # dataset labels *.cache version
def __init__(self,
path,
img_size=640,
batch_size=16,
augment=False,
hyp=None,
rect=False,
image_weights=False,
cache_images=False,
single_cls=False,
stride=32,
pad=0.0,
prefix=''):
# 初始化一些类变量
self.img_size = img_size
self.augment = augment
self.hyp = hyp
self.image_weights = image_weights
self.rect = False if image_weights else rect
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
self.mosaic_border = [-img_size // 2, -img_size // 2]
self.stride = stride
self.path = path
self.albumentations = Albumentations() if augment else None
try:
f = [] # image files
# 如果p是列表 则直接遍历 否则的话 把p转换为列表再遍历
for p in path if isinstance(path, list) else [path]:
# 如果p是列表 则直接遍历 否则的话 把p转换为列表再遍历, 这里的path是数据集目录 ../coco128/images/train2017
p = Path(p) # os-agnostic
if p.is_dir(): # dir
# 如果是目录 那么把该目录下的文件都放到f里面
# glob 该方法返回所有匹配的文件路径列表(list) recursive=True 对p里面的结果进行返回 **指的是所有目录和子目录里面的文件 *.*进行文件过滤
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
# f = list(p.rglob('*.*')) # pathlib
elif p.is_file(): # file
with open(p) as t:
t = t.read().strip().splitlines()
parent = str(p.parent) + os.sep
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
else:
raise Exception(f'{prefix}{p} does not exist')
# 把f中的文件进行过滤,仅仅保留格式为图片的文件
"""
x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS =>
for x in f:
if x.split('.')[-1].lower() in IMG_FORMATS:
x.replace('/', os.sep)
"""
self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
assert self.im_files, f'{prefix}No images found'
except Exception as e:
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
# Check cache
# img2label_paths函数的作用就是把 coco128/images/train2017/1.jpg -> coco128/labels/train2017/1.txt
self.label_files = img2label_paths(self.im_files) # labels
# with_suffi给文件加后缀 "1.txt".with_suffix('cache') ->1.txt.cache
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
# 如果缓存存在,那么就读取缓存字典,否则就创建缓存
try:
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
assert cache['version'] == self.cache_version # same version
assert cache['hash'] == get_hash(self.label_files + self.im_files) # same hash
except Exception:
# 如果缓存不存在,那么使用self.cache_labels函数去创建缓存,该函数会返回一个字典{'hash':xxx,'results':xxx, 'msgs':xxx,'version':xxx,'文件':xxx}
# 重点是results保存了对数据处理的结果
cache, exists = self.cache_labels(cache_path, prefix), False # cache
# Display cache
# nf是文件找到并且完好的个数,n是总数, 其他则是文件损坏或者丢失的个数
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
# 当缓存存在的时候,读取缓存数据
if exists and LOCAL_RANK in (-1, 0):
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
if cache['msgs']:
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
# Read cache
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
# .values返回字典所有的值 现在字典只剩下 x[im_file],当时在存x[im_file]使用zip打包存值,现在就可以解压缩取值
# x[im_file]: 保存了lb(row *(cls,x,y,w,h)) img的shape segments(是否有多边形)
labels, shapes, self.segments = zip(*cache.values())
self.labels = list(labels)
self.shapes = np.array(shapes, dtype=np.float64)
# 把文件和标签进行更新,只保留那些完好的文件
self.im_files = list(cache.keys()) # update
self.label_files = img2label_paths(cache.keys()) # update
n = len(shapes) # number of images
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches
self.batch = bi # batch index of image
self.n = n
self.indices = range(n)
# Update labels
include_class = [] # filter labels to include only these classes (optional)
include_class_array = np.array(include_class).reshape(1, -1)
for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
# 如果include_class 不为空, 那么去除掉不在include_class里面的标签
if include_class:
# label row*(cls,x,y,w,h)
j = (label[:, 0:1] == include_class_array).any(1)
self.labels[i] = label[j]
if segment:
self.segments[i] = segment[j]
# 如果是单类别训练,那就不需要判断,直接把有框的为一类即可
if single_cls: # single-class training, merge all classes into 0
self.labels[i][:, 0] = 0
if segment:
self.segments[i][:, 0] = 0
# Rectangular Training
if self.rect: # 采用矩形训练
# Sort by aspect ratio
s = self.shapes # wh
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.im_files = [self.im_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
# Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
self.ims = [None] * n
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
# 把图片进行缓存,加快训练速度,一般都不会这么做,内存足够大的当我没说
if cache_images:
gb = 0 # Gigabytes of cached images
self.im_hw0, self.im_hw = [None] * n, [None] * n
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT)
for i, x in pbar:
if cache_images == 'disk':
gb += self.npy_files[i].stat().st_size
else: # 'ram'
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
gb += self.ims[i].nbytes
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
pbar.close()
# 将标签缓存起来
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
# Cache dataset labels, check images and read shapes
"""
x[results]: 保存了nf, nm, ne, nc, len(self.im_files) self.im_files: 保存了img路径
x[im_file]: 保存了lb(row *(cls,x,y,w,h)) img的shape segments(是否有多边形)
"""
x = {} # 缓存的字典
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
with Pool(NUM_THREADS) as pool:
# pool.imap_unordered(func, args): 对大量数据遍历多进程计算 返回一个迭代器
# zip函数将可迭代对象进行打包, e.g a=[1,2,3] b=[2,4,5] list(zip(a,b))=[(1,2),(2.4).(3,6)]
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
desc=desc,
total=len(self.im_files),
bar_format=BAR_FORMAT)
# pbar的返回值也就是verify_image_label函数的的返回值
# verify_image_label 对传入的图片和标签进行读取,统计损坏和完好的个数,并且把图片的shape和标签的内容都给读取出来
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
nm += nm_f
nf += nf_f
ne += ne_f
nc += nc_f
# 如果图片没问题,那就保存该图片相关信息
if im_file:
x[im_file] = [lb, shape, segments]
if msg:
msgs.append(msg)
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
pbar.close()
# 输出日志信息
if msgs:
LOGGER.info('\n'.join(msgs))
if nf == 0:
LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
# hashh和version是为了下一次读取的时候用来标识唯一值的作用
x['hash'] = get_hash(self.label_files + self.im_files)
x['results'] = nf, nm, ne, nc, len(self.im_files)
x['msgs'] = msgs # warnings
x['version'] = self.cache_version # cache version
# 把缓存信息进行保存,为了下一次读取使用
try:
np.save(path, x) # save cache for next time
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
LOGGER.info(f'{prefix}New cache created: {path}')
except Exception as e:
LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable
return x
# 返回图片个数
def __len__(self):
return len(self.im_files)
# def __iter__(self):
# self.count = -1
# print('ran dataset iter')
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
# return self
def __getitem__(self, index):
index = self.indices[index] # linear, shuffled, or image_weights
hyp = self.hyp
mosaic = self.mosaic and random.random() < hyp['mosaic']
if mosaic:
# Load mosaic
img, labels = self.load_mosaic(index)
shapes = None
# MixUp augmentation
if random.random() < hyp['mixup']:
# 使用mixup数据增强,就是在这张图片里面,同时也会有另一张图片
img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
else:
# Load image
img, (h0, w0), (h, w) = self.load_image(index)
# Letterbox
# 判断是否采用矩形训练,如果采用矩形训练那么则需要获取当前图片矩形的大小,否则则是正方形训练(通过自己设置大小)
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
# 将放缩后缺失的地方填充起来, 但是有点不理解为什么要用(114,114,114)而不用全零填充
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
labels = self.labels[index].copy()
# 因为图片进行过了放缩,所以标注的文件也要进行放缩
if labels.size: # normalized xywh to pixel xyxy format
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
if self.augment:
# 对图片进行透视变换
img, labels = random_perspective(img,
labels,
degrees=hyp['degrees'],
translate=hyp['translate'],
scale=hyp['scale'],
shear=hyp['shear'],
perspective=hyp['perspective'])
nl = len(labels) # number of labels
if nl:
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
if self.augment:
# Albumentations
# 想要更深的了解,可以看这篇博文 https://zhuanlan.zhihu.com/p/107399127/
img, labels = self.albumentations(img, labels)
nl = len(labels) # update after albumentations
# HSV color-space
# 图像色彩增强
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
# Flip up-down
if random.random() < hyp['flipud']:
# 对图片进行上下翻转
img = np.flipud(img)
# 因为对图片进行的上下翻转,所以需要对标签里面的y进行翻转
if nl:
labels[:, 2] = 1 - labels[:, 2]
# Flip left-right
if random.random() < hyp['fliplr']:
# 对图片进行左右翻转
img = np.fliplr(img)
# 因为对图片进行的上下翻转,所以需要对标签里面的x进行翻转
if nl:
labels[:, 1] = 1 - labels[:, 1]
# Cutouts
# labels = cutout(img, labels, p=0.5)
# nl = len(labels) # update after cutout
# 要生成6个,是为了给一个图片的索引,img_index,cls,x,y,w,h
labels_out = torch.zeros((nl, 6))
if nl:
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
# img = img[:, :, ::-1].transpose(2, 0, 1) 这是我从网上找到转换方法
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(img) # 将内存不连续变成内存连续, 训练更快
return torch.from_numpy(img), labels_out, self.im_files[index], shapes
def load_image(self, i):
# 读取图片,并将图片进行放缩成img_size大小
# Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
# 获取图片文件和图片缓存文件
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
if im is None: # not cached in RAM
# 缓存,存在 直接加载
if fn.exists(): # load npy
im = np.load(fn)
else: # read image
# 用的是opencv读取图片,是BGR格式 opencv h,w,c
im = cv2.imread(f) # BGR
assert im is not None, f'Image Not Found {f}'
# 图片本的宽高
h0, w0 = im.shape[:2] # orig hw
# 把图片进行放缩
r = self.img_size / max(h0, w0) # ratio
if r != 1: # if sizes are not equal
# 如果需要放缩,那么要等比例放缩保持图片不变形
im = cv2.resize(im, (int(w0 * r), int(h0 * r)),
interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA)
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
else:
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
def cache_images_to_disk(self, i):
# Saves an image as an *.npy file for faster loading
f = self.npy_files[i]
if not f.exists():
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
@staticmethod
def collate_fn(batch):
"""
该函数的输入就是 batch*__getitem__的输出
这个函数会在create_dataloader中生成dataloader时调用:
整理函数 将image和label整合到一起
:return torch.stack(img, 0): 如[16, 3, 640, 640] 整个batch的图片
:return torch.cat(label, 0): 如[15, 6] [num_target, img_index+class_index+xywh(normalized)] 整个batch的label
:return path: 整个batch所有图片的路径
:return shapes: (h0, w0), ((h / h0, w / w0), pad) for COCO mAP rescaling
pytorch的DataLoader打包一个batch的数据集时要经过此函数进行打包 通过重写此函数实现标签与图片对应的划分,一个batch中哪些标签属于哪一张图片,形如
[[0, 6, 0.5, 0.5, 0.26, 0.35],
[0, 6, 0.5, 0.5, 0.26, 0.35],
[1, 6, 0.5, 0.5, 0.26, 0.35],
[2, 6, 0.5, 0.5, 0.26, 0.35],]
前两行标签属于第一张图片, 第三行属于第二张。。。
"""
im, label, path, shapes = zip(*batch) # transposed
for i, lb in enumerate(label):
# 把这个标签归到给定的图片
lb[:, 0] = i # add target image index for build_targets()
return torch.stack(im, 0), torch.cat(label, 0), path, shapes
@staticmethod
def collate_fn4(batch):
"""
与collate_fn类似
"""
img, label, path, shapes = zip(*batch) # transposed
n = len(shapes) // 4
im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
i *= 4
if random.random() < 0.5:
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
align_corners=False)[0].type(img[i].type())
lb = label[i]
else:
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
im4.append(im)
label4.append(lb)
for i, lb in enumerate(label4):
lb[:, 0] = i # add target image index for build_targets()
return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
def verify_image_label(args):
"""
return
nm :当前图片的label有是否缺失
nf: 当前图片的label是否存在
ne:当前图片的label是否为空
nc: 当前图片的label是否损坏
msg:返回图片label是否损坏的消息
"""
# Verify one image-label pair
im_file, lb_file, prefix = args
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
try:
# verify images
# 对图片进行验证,图片像素要大于10*10
im = Image.open(im_file)
im.verify() # PIL verify
# 图片的尺寸
shape = exif_size(im) # image size
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
# 如果是jpg的格式,要判断图片是否损坏
if im.format.lower() in ('jpg', 'jpeg'):
with open(im_file, 'rb') as f:
f.seek(-2, 2)
if f.read() != b'\xff\xd9': # corrupt JPEG
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'
# verify labels
# 对图片的标签进行验证
#### 做旋转检测的话,对下面进行修改?网络的输出维度80*80*86?损失函数加上一个角度损失(当作回归还是分类?)? 这里不影响阅读只是个人的一个思考。
if os.path.isfile(lb_file):
nf = 1 # label found
with open(lb_file) as f:
# 就是一个 [row*[cls, x, y, w, h]]
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
# 如果有某一行超过了6那就说明是多边形预测,对于segment框没了解。
if any(len(x) > 6 for x in lb): # is segment
classes = np.array([x[0] for x in lb], dtype=np.float32)
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
# [row*[cls, x, y, w, h]]
lb = np.array(lb, dtype=np.float32)
nl = len(lb) # 保存一共有多少行
if nl:
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
# 去除重复的行
_, i = np.unique(lb, axis=0, return_index=True)
if len(i) < nl: # duplicate row check
lb = lb[i] # remove duplicates
if segments:
segments = segments[i]
msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
else:
ne = 1 # label empty
lb = np.zeros((0, 5), dtype=np.float32)
else:
nm = 1 # label missing
lb = np.zeros((0, 5), dtype=np.float32)
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
except Exception as e:
nc = 1
msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
return [None, None, None, None, nm, nf, ne, nc, msg]
可以配合这张图来理解代码,我这里只是考虑小图超过大图的情况,对于小图没超过大图,可以结合自己画图加深理解
def load_mosaic(self, index):
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
# 使用的是4张图片的马赛克增强
labels4, segments4 = [], []
# 图片的大小,即四张图片拼在一起的大小
s = self.img_size
# random.uniform(x, y)返回一个随机数[x, y]
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
random.shuffle(indices)
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = self.load_image(index)
# place img in img4
if i == 0: # top left 右下角坐标的固定
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
# x1a,y1a为左上角的坐标, x2a,y2a为右下角的坐标在大图的坐标
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
# x1b, y1b 左上角坐标,x2b, y2b右下角坐标,在小图的坐标
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
# 理解好了i=0的情况,下面的都是类似的操作,只是说固定的坐标不一样,反正就是一点,中心点的坐标是固定的
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
# 把小图放到大图里面的,小图和大图的坐标都已经经过计算裁剪了
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
# 如果小图宽度不够 或者高度不够 则需要padding
padw = x1a - x1b
padh = y1a - y1b
# Labels 因为图的位置不一样了,训练的框也需要进行改变
labels, segments = self.labels[index].copy(), self.segments[index].copy()
if labels.size:
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
# 把该张图片的所有标签存起来,放到labels4里面去
labels4.append(labels)
segments4.extend(segments)
# Concat/clip labels
# 对标签进行一些处理,有的可能已经被截取了,存在的需要合并
# labels4 ( 4*labels )
labels4 = np.concatenate(labels4, 0)
for x in (labels4[:, 1:], *segments4):
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
# img4, labels4 = replicate(img4, labels4) # replicate
# Augment
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
# 随机透视变换 通过透视变换矩阵对mosaic整合后的图片进行随机旋转、缩放、平移、裁剪,透视变换,最后将大图进行resize= img_size,详细的可以去看看opencv相关的教程
img4, labels4 = random_perspective(img4,
labels4,
segments4,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
perspective=self.hyp['perspective'],
border=self.mosaic_border) # border to remove
return img4, labels4
# load_mosaic9和load_mosaic思想上大体都差不多
def load_mosaic9(self, index):
# YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
labels9, segments9 = [], []
s = self.img_size
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
random.shuffle(indices)
hp, wp = -1, -1 # height, width previous
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = self.load_image(index)
# place img in img9
if i == 0: # center
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
h0, w0 = h, w
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
elif i == 1: # top
c = s, s - h, s + w, s
elif i == 2: # top right
c = s + wp, s - h, s + wp + w, s
elif i == 3: # right
c = s + w0, s, s + w0 + w, s + h
elif i == 4: # bottom right
c = s + w0, s + hp, s + w0 + w, s + hp + h
elif i == 5: # bottom
c = s + w0 - w, s + h0, s + w0, s + h0 + h
elif i == 6: # bottom left
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
elif i == 7: # left
c = s - w, s + h0 - h, s, s + h0
elif i == 8: # top left
c = s - w, s + h0 - hp - h, s, s + h0 - hp
padx, pady = c[:2]
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
# Labels
labels, segments = self.labels[index].copy(), self.segments[index].copy()
if labels.size:
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
labels9.append(labels)
segments9.extend(segments)
# Image
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
hp, wp = h, w # height, width previous
# Offset
yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
# Concat/clip labels
labels9 = np.concatenate(labels9, 0)
labels9[:, [1, 3]] -= xc
labels9[:, [2, 4]] -= yc
c = np.array([xc, yc]) # centers
segments9 = [x - c for x in segments9]
for x in (labels9[:, 1:], *segments9):
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
# img9, labels9 = replicate(img9, labels9) # replicate
# Augment
img9, labels9 = random_perspective(img9,
labels9,
segments9,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
perspective=self.hyp['perspective'],
border=self.mosaic_border) # border to remove
return img9, labels9
参考文献
https://blog.csdn.net/weixin_55073640/article/details/122853743
https://blog.csdn.net/YoGuohcx/article/details/121926120
https://zhuanlan.zhihu.com/p/361830892