Python-深度学习-Keras 简介

Keras 简介

  Keras 是一个 Python 深度学习框架,可以方便地定义和训练几乎所有类型的深度学习模型。Keras 最开始是为研究人员开发的,其目的在于快速实验。

  • Keras 具有以下重要特性。

(1)相同的代码可以在 CPU 或 GPU 上无缝切换运行。
(2)具有用户友好的 API,便于快速开发深度学习模型的原型。
(3)内置支持卷积网络(用于计算机视觉)、循环网络(用于序列处理)以及二者的任意组合。
(4)支持任意网络架构:多输入或多输出模型、层共享、模型共享等。这也就是说,Keras 能够构建任意深度学习模型,无论是生成式对抗网络还是神经图灵机。

  Keras 基于宽松的 MIT 许可证发布,这意味着可以在商业项目中免费使用它。它与所有版本的 Python 都兼容(截至 2017 年年中,从 Python 2.7 到 Python 3.6 都兼容)。
  Keras 已有 200 000 多个用户,既包括创业公司和大公司的学术研究人员和工程师,也包括研究生和业余爱好者。Google、Netflix、Uber、CERN、Yelp、Square 以及上百家创业公司都在用 Keras 解决各种各样的问题。
  Keras 还是机器学习竞赛网站 Kaggle 上的热门框架,最新的深度学习竞赛中,几乎所有的优胜者用的都是 Keras 模型,如图 1 所示。

Python-深度学习-Keras 简介_第1张图片

图 1 不同深度学习框架的 Google 网页搜索热度的变化趋势

一、Keras、TensorFlow、Theano 和 CNTK

  Keras 是一个模型级(model-level)的库,为开发深度学习模型提供了高层次的构建模块。它不处理张量操作、求微分等低层次的运算。相反,它依赖于一个专门的、高度优化的张量库来完成这些运算,这个张量库就是 Keras 的后端引擎(backend engine)。Keras 没有选择单个张量库并将 Keras 实现与这个库绑定,而是以模块化的方式处理这个问题(见图 2)。因此,几个不同的后端引擎都可以无缝嵌入到 Keras 中。目前,Keras 有三个后端实现:TensorFlow 后端、Theano 后端和微软认知工具包(CNTK,Microsoft cognitive toolkit)后端。未来 Keras 可能会扩展到支持更多的深度学习引擎。

Python-深度学习-Keras 简介_第2张图片 图 2 深度学习的软件栈和硬件栈

   TensorFlow、CNTK 和 Theano 是当今深度学习的几个主要平台。Theano 由蒙特利尔大学的 MILA 实验室开发,TensorFlow 由 Google 开发,CNTK 由微软开发。你用 Keras 写的每一段代码都可以在这三个后端上运行,无须任何修改。也就是说,你在开发过程中可以在两个后端之间无缝切换,这通常是很有用的。例如,对于特定任务,某个后端的速度更快,那么我们就可以无缝切换过去。我们推荐使用 TensorFlow 后端作为大部分深度学习任务的默认后端,因为它的应用最广泛,可扩展,而且可用于生产环境。通过 TensorFlow(或 Theano、CNTK),Keras 可以在 CPU 和 GPU 上无缝运行。在 CPU 上运行时,TensorFlow 本身封装了一个低层次的张量运算库,叫作 Eigen;在 GPU 上运行时,TensorFlow 封装了一个高度优化的深度学习运算库,叫作 NVIDIA CUDA 深度神经网络库(cuDNN)。

二、使用 Keras 开发:概述

  典型的 Keras 工作流程为:

(1) 定义训练数据:输入张量和目标张量。
(2)定义层组成的网络(或模型),将输入映射到目标。
(3) 配置学习过程:选择损失函数、优化器和需要监控的指标。
(4)调用模型的 fit 方法在训练数据上进行迭代。

  定义模型有两种方法:一种是使用 Sequential 类(仅用于层的线性堆叠,这是目前最常见的网络架构),另一种是函数式 API(functional API,用于层组成的有向无环图,让你可以构建任意形式的架构)。
下面是一个利用 Sequential 类定义的两层模型(注意,我们向第一层传入了输入数据的预期形状)。

from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(784,)))
model.add(layers.Dense(10, activation='softmax'))

  下面是用函数式 API 定义的相同模型。

input_tensor = layers.Input(shape=(784,))
x = layers.Dense(32, activation='relu')(input_tensor)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = models.Model(inputs=input_tensor, outputs=output_tensor)

  利用函数式 API,你可以操纵模型处理的数据张量,并将层应用于这个张量,就好像这些层是函数一样。一旦定义好了模型架构,使用 Sequential 模型还是函数式 API 就不重要了。接下来的步骤都是相同的。配置学习过程是在编译这一步,你需要指定模型使用的优化器和损失函数,以及训练过程中想要监控的指标。下面是单一损失函数的例子,这也是目前最常见的。

from keras import optimizers
model.compile(optimizer=optimizers.RMSprop(lr=0.001),
        loss='mse',
        metrics=['accuracy'])

  最后,学习过程就是通过 fit() 方法将输入数据的 Numpy 数组(和对应的目标数据)传入模型,这一做法与 Scikit-Learn 及其他机器学习库类似。

model.fit(input_tensor, target_tensor, batch_size=128, epochs=10)

  掌握了 Keras 的用法之后,我们需要了解的问题有:哪种类型的网络架构适合解决哪种类型的问题?如何选择正确的学习配置?如何调节模型使其给出你想要的结果?

—— 摘录自《Python 深度学习》

你可能感兴趣的:(深度学习,Python,python,神经网络,机器学习,Keras)