- Assistant API的原理及应用
赛丽曼
人工智能chatgpt
什么是AssistantsAPI?**发布日期:**2023年11月6日,OpenAI在开发者大会上发布了AssistantsAPI——一款面向开发者的工具,用于在应用中构建AI助手。✅它可以做什么?AssistantsAPI允许开发者构建智能助手,这些助手可通过:instructions(指令):设定助手行为;models(模型):指定使用的GPT模型;tools(工具):调用代码解释器、知识库
- 项目管理中,范围管理和需求管理有什么区别
易成技术团队
即时通讯工具
范围管理与需求管理在项目管理中存在以下五大核心区别:1、关注层级不同、2、管理目标不同、3、输出成果不同、4、涉及角色不同、5、所用工具与流程不同。其中,“关注层级不同”是二者的根本分野。需求管理聚焦于收集和分析利益相关者的真实需求,回答“用户想要什么”;而范围管理则是在项目层面明确要交付的全部工作,回答“我们做什么、不做什么”。这种层级差异决定了需求是制定范围的输入源,范围是实现需求的边界框架,
- Spring Boot类加载机制深度剖析
weixin_ab
#类的加载机制java类加载
SpringBoot类加载机制深度剖析:从可执行Jar到自动配置的实现原理SpringBoot通过对Java类加载机制的定制化扩展,实现了可执行Jar包运行、自动配置、热部署等核心特性。其类加载机制既保留了JVM标准规范,又针对微服务架构和嵌入式容器进行了优化,以下从架构设计、核心组件、典型场景到源码实现展开深度解析。一、SpringBoot类加载器体系架构(对比独立Tomcat)1.简化的两层类
- 李宏毅2025《机器学习》第四讲-Transformer架构的演进
Transformer架构的演进与替代方案:从RNN到Mamba的技术思辨Transformer作为当前AI领域的标准架构,其设计并非凭空而来,也并非没有缺点。本次讨论的核心便是:新兴的架构,如MAMA,是如何针对Transformer的弱点进行改进,并试图提供一个更优的解决方案的。要理解架构的演进,我们必须首先明确一个核心原则:每一种神经网络架构,都有其存在的技术理由。CNN(卷积神经网络):为
- 如何实现表格选中时禁用树结构的复选框功能(El-Tree 与 El-Table 联动实现)
Peak_Gao
vue.jselementuijavascript
在前端开发中,树形结构和表格是常用的组件组合,尤其是在展示和管理复杂数据时。使用ElementUI的el-tree和el-table组件,我们可以实现当表格中有选中行时,自动禁用树结构中的复选框,反之亦然。这不仅提升了用户体验,还能有效防止数据操作上的冲突。本文将详细介绍如何实现这一功能,并提供相应的代码示例。实现思路树结构(el-tree):用于展示分层数据,支持复选框选择。表格(el-tabl
- 告别等等等我的大三奇遇记一款让代码飞起来的秘密武器(1750039621223600)
Github项目推荐
rust前端开发语言编程后端java计算机
作为一名计算机科学与技术专业的大三学生,我总感觉自己的编程之路充满了“等等等”。编译项目要等,运行测试要等,尤其是在处理一些涉及网络请求和高并发的课程设计时,那慢吞吞的响应速度,简直让我怀疑人生。室友们也常常抱怨,咱们写的这些“玩具”项目,怎么就这么卡呢?直到一次偶然的机会,我接触到了一款堪称“黑科技”的框架,它彻底颠覆了我对Web后端开发的认知,让我的代码第一次有了“起飞”的感觉。这篇“奇遇记”
- DTW 动态时间规整:时间序列的柔性桥梁
在时间的长河中,数据如浪花般不断涌现,而时间序列数据更是其中璀璨的存在。当我们试图比较两段时间序列时,常常会遇到一个棘手的问题:就像两位舞者,他们演绎着相同的舞蹈,却有着不同的节奏与速度,直接对比难以判断二者的相似度。而DTW(DynamicTimeWarping,动态时间规整)算法,就像一座神奇的柔性桥梁,能够跨越时间节奏的差异,精准度量时间序列间的相似性,在众多领域发挥着不可或缺的作用。一、D
- 图解操作系统资料 - 小林Coding整理
图解操作系统资料-小林Coding整理去发现同类优质开源项目:https://gitcode.com/欢迎使用小林Coding精心整理的《图解操作系统》资料,版本号为v1.0。本资源文件以直观、易懂的方式,详细介绍了操作系统的基本原理与运作机制。资料概述本压缩包(小林Coding-图解操作系统-v1.0.rar)包含了以下内容:操作系统概述:介绍操作系统的定义、作用、发展历程及分类。进程管理:详细
- 先验与后验:贝叶斯框架下的认知进化论
大千AI助手
Python#OTHER人工智能机器学习人工智能贝叶斯概率先验概率后验概率条件概率
在贝叶斯概率框架中,“先验概率”(PriorProbability)和**“后验概率”(PosteriorProbability)的命名直接体现了认知更新的时序逻辑**。这两个概念的核心区别在于:是否已利用新证据(B)进行信念修正。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、命名的本质:认知
- 「源力觉醒 创作者计划」_文心大模型开源:开启 AI 新时代的大门
小黄编程快乐屋
人工智能
在人工智能的浩瀚星空中,大模型技术宛如一颗璀璨的巨星,照亮了无数行业前行的道路。自诞生以来,大模型凭借其强大的语言理解与生成能力,引发了全球范围内的技术变革与创新浪潮。百度宣布于6月30日开源文心大模型4.5系列,这一消息如同一颗重磅炸弹,在AI领域掀起了惊涛骇浪,其影响之深远,意义之重大,足以改写行业的发展轨迹。百度这次放大招,直接把文心大模型4.5开源了,这操作就像往国内AI圈子里空投了一个超
- Vue 3 + Element Plus 常见开发问题与解决方案手册
JaysonJin
小问题vue.js前端javascript
Vue3+ElementPlus常见开发问题与解决方案手册本文整理了常见但容易混淆的几个Vue3前端开发问题,包括插槽、原型链、响应式数据处理、v-model报错、样式阴影控制等,建议收藏学习!一、动态插槽fallback原理详解✅场景在组件中使用如下代码:✅疑问为什么加了默认内容,父组件传了插槽就会生效,没传就自动使用默认内容?✅解答这是Vue插槽的fallback(回退)机制:父组件有传插槽,
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- EasyExcel 初使用—— Java 实现多种写入 Excel 功能
Java雪荷
EasyExceljavaexcel开发语言github
前言大家好,我是雪荷。之前有一篇博客(EasyExcel初使用——Java实现读取Excel功能_javaeasyexcel.read-CSDN博客)介绍了Java如何读取Excel表格,那么此篇博客就和大家介绍下Java如何利用EasyExcel写入Excel。EasyExcel官方网址:EasyExcel官方文档-基于Java的Excel处理工具|EasyExcel前置准备引入依赖先创建一个S
- Longformer: The Long-Document Transformer(2020-4-10)
不负韶华ღ
深度学习(NLP)transformer深度学习人工智能
模型介绍目前基于Transformer的预训练模型在各项NLP任务纷纷取得更好的效果,这些成功的部分原因在于Self-Attention机制,它运行模型能够快速便捷地从整个文本序列中捕获重要信息。然而传统的Self-Attention机制的时空复杂度与文本的序列长度呈平方的关系,这在很大程度上限制了模型的输入不能太长,因此需要将过长的文档进行截断传入模型进行处理,例如BERT中能够接受的最大序列长
- OpenGL ES 纹理(7)
起司锅仔
OpenGLOpenGL安卓android
OpenGLES纹理(7)简述通过前面几章的学习,我们已经可以绘制渲染我们想要的逻辑图形了,但是如果我们想要渲染一张本地图片,这就需要纹理了。纹理其实是一个可以用于采样的数据集,比较典型的就是图片了,我们知道我们的片段着色器会对每一个像素都执行一次来计算,该像素应该渲染什么颜色,纹理就是一个数据集,比如想要渲染一个图片,我们就是用图片的所有像素信息作为总数据集,然后片段着色器计算的时候就根据像素坐
- 【unitrix】 4.19 类型级二进制数减法实现解析(sub.rs)
liuyuan77
我的unitrix库rust
一、源码这段代码实现了一个类型级别的数值系统,支持多种数字类型(整数、定点数、变量)之间的减法运算。它使用了Rust的类型系统特性(traits和关联类型)在编译期完成数值计算。//小数、浮点数与Var的混合计算未实现usecore::ops::{Neg,Not,Add,Sub};usecrate::number::{Z0,P1,N1,B0,B1,FixedPoint,Var,NonZero,Pr
- Coze智能体开发:什么是提示词及其编写建议
王国平
CozeAIAgent智能体开发人工智能大数据语言模型python开发语言
提示词(Prompt)是AIAgent的核心,它决定了模型生成结果的质量和准确性。提示词不仅影响输出,还决定了模型对输入信息的理解深度。通过科学的提示词设计,开发者能高效引导模型生成符合预期的高质量输出。基础概念提示词提示词(Prompt)是用户在与模型或智能系统互动时输入的指令或文本,用来引导系统生成回应或执行特定任务。它可以是问题、命令或描述性文字,帮助系统理解用户的意图并提供相应的结果。提示
- Coze智能体开发:如何批量生成和处理图片
王国平
CozeAIAgent智能体开发语言模型人工智能开发语言智能体Agent
在绘本制作、图片后期制作等场景中,往往需要使用模型来批量生成和处理图片。扣子提供了多个图像处理类节点,支持图像生成、添加水印、画质优化等多种常见的图片处理方式,你可以在批处理节点中嵌套图像生成等图像处理节点,实现图片的批量操作。本文档以绘本制作工作流为例,演示如何通过批处理节点和图像节点实现图像的批量生成和批量处理。效果演示通过绘本制作工作流,你可以批量生成类似以下风格的图片。搭建过程中你也可以根
- Django5.1(91)—— 如何删除一个 Django 应用
小天的铁蛋儿
djangoPythondjangopython后端
如何删除一个Django应用Django提供了将一组功能组织成名为应用程序的Python包的能力。当需求发生变化时,应用程序可能会变得过时或不再需要。以下步骤将帮助你安全地删除一个应用程序。删除所有与该应用程序相关的引用(导入、外键等)。从相应的models.py文件中删除所有模型。通过运行makemigrations来创建相关的迁移。这一步会生成一个迁移,用于删除已删除模型的表,以及与这些模型相
- Linux: perf: debug问题一例,cpu使用率上升大约2%;多线程如何细化cpu及perf数据分析
mzhan017
kernel系统性能linux服务器网络
文章目录前提面临的问题内核级别函数的差别继续debug总结根据pid前提一个进程安置在一个CPU上,新功能上线之后,固定量的业务打起来,占用的CPU是42%。之前没有新功能的情况下,CPU占用是40%。差了大约2%。而且这个进程里的线程数非常多,有50多个线程。从差距看变化不大,没有别的办法,只能使用perf来抓取数据来看。但是使用perf也要面临很多的问题。面临的问题面临的问题有一堆:两次per
- Excel 如何让某些符合特定条件的数据自动变色,以作警示?
冰糖心书房
Excelexcel
回答这个问题我们得用Excel中一个极为实用的功能——条件格式(ConditionalFormatting)。条件格式能让单元格根据其自身的值或与其他单元格的关系,自动改变外观(如背景色、字体颜色、图标等)。这就像给数据装上了一个“自动警报系统”,让关键信息和异常数据在第一时间“跳”出来。一、条件格式的核心位置在Excel菜单栏的开始(Home)选项卡中,你会找到一个非常显眼的条件格式(Condi
- 【python实用小脚本-125】基于 Python 的 Gmail 邮件发送工具:实现高效邮件自动化
Kyln.Wu
Pythonpython自动化网络
引言在现代办公和开发环境中,邮件通信是一种重要的沟通方式。自动化发送邮件可以大大提高工作效率,例如发送通知、报告或文件。本文将介绍一个基于Python的Gmail邮件发送工具,它能够通过Gmail的SMTP服务器发送邮件,并支持附件功能。该工具主要利用了Python的smtplib库和email库,结合了邮件构建和网络通信技术,为用户提供了一个简单易用的邮件发送解决方案。总体功能概述Gmail邮件
- 相机位姿估计:基于四个特征点的精准姿态解算
童嘉航Denley
相机位姿估计:基于四个特征点的精准姿态解算【下载地址】相机位姿估计1根据四个特征点估计相机姿态随文Demo本资源文件提供了一个基于OpenCV的相机位姿估计Demo,主要功能是根据四个特征点来估计相机的姿态。通过该Demo,您可以学习如何使用OpenCV库中的相关函数来实现相机位姿的估计项目地址:https://gitcode.com/open-source-toolkit/df72a项目介绍在计
- Python报错信息归类以及处理
ʕᵔᴥᵔʔPython的错误和异常可以分为多个类别,了解这些类别有助于更好地调试和处理错误。以下是Python中常见报错信息的归类和分析。1.语法错误(SyntaxError)在代码执行前被解析器捕获的错误,通常是由于代码不符合Python语法规则。常见子类:IndentationError:缩进错误TabError:Tab和空格混用示例:#缺少冒号ifTrueprint("Hello")#Syn
- 搜索架构中的NLP技术:提升搜索准确性的关键
搜索引擎技术
架构自然语言处理人工智能ai
搜索架构中的NLP技术:提升搜索准确性的关键关键词:搜索架构、NLP技术、查询理解、语义搜索、相关性排序、意图识别、BERT模型摘要:本文将深入探讨现代搜索架构中NLP技术的核心应用,从查询理解到结果排序的全流程,揭示NLP如何提升搜索准确性。我们将通过生动的比喻解释复杂概念,分析关键技术原理,并提供实际代码示例,帮助读者全面理解搜索系统背后的NLP魔法。背景介绍目的和范围本文旨在解析NLP技术在
- LRU缓存算法在搜索引擎中的应用
数据结构与算法学习
缓存算法搜索引擎ai
LRU缓存算法在搜索引擎中的应用关键词:LRU算法、缓存淘汰、搜索引擎、哈希表、双向链表、性能优化、访问频率摘要:本文深入探讨了LRU(最近最少使用)缓存算法在搜索引擎中的关键应用。我们将从基本概念出发,通过生活化的比喻解释LRU的工作原理,分析其在搜索引擎架构中的具体实现方式,并通过Python代码示例展示如何构建一个高效的LRU缓存系统。文章还将讨论LRU算法的数学建模、实际应用场景以及未来发
- 探索AI人工智能医疗NLP实体识别系统的架构设计
AI学长带你学AI
人工智能自然语言处理easyuiai
探索AI人工智能医疗NLP实体识别系统的架构设计关键词:人工智能、医疗NLP、实体识别、系统架构、深度学习、自然语言处理、医疗信息化摘要:本文将深入探讨医疗领域NLP实体识别系统的架构设计。我们将从基础概念出发,逐步解析医疗文本处理的特殊性,详细介绍实体识别技术的核心原理,并通过实际案例展示如何构建一个高效可靠的医疗实体识别系统。文章还将探讨当前技术面临的挑战和未来发展方向,为医疗AI领域的从业者
- 60天python训练计划----day59
在之前的学习中,我们层层递进的介绍了时序模型的发展,从AR到MA到ARMA,再到ARIMA。本质就是把数据处理的操作和模型结合在一起了,实际上昨天提到的季节性差分也可以合并到模型中,让流程变得更加统一。季节性差分用S来表示,所以这个模型叫做SARIMA模型一、SARIMA模型SARIMA(SeasonalAutoRegressiveIntegratedMovingAverage)是标准ARIMA模
- 【python实用小脚本-128】基于 Python 的 Hacker News 爬虫工具:自动化抓取新闻数据
Kyln.Wu
Pythonpython爬虫自动化
引言在技术社区中,HackerNews是一个汇聚最新技术文章和讨论的热门平台。许多开发者和技术爱好者依赖它来获取行业动态和前沿资讯。然而,手动浏览和筛选这些文章可能耗时且低效。本文将介绍一个基于Python的HackerNews爬虫工具,它能够自动化地从HackerNews网站抓取最新文章,并将结果保存为CSV文件。该工具主要利用了Python的requests、BeautifulSoup和csv
- AI智能体原理及实践:从概念到落地的全链路解析
you的日常
人工智能大语言模型人工智能机器学习深度学习神经网络自然语言处理
AI智能体正从实验室走向现实世界,成为连接人类与数字世界的桥梁。它代表了人工智能技术从"知"到"行"的质变,是能自主感知环境、制定决策、执行任务并持续学习的软件系统。在2025年,AI智能体已渗透到智能家居、企业服务、医疗健康、教育和内容创作等领域,展现出强大的生产力与创造力。然而,其发展也伴随着技术挑战、伦理困境和安全风险,需要从架构设计到落地应用的全链条思考与平衡。一、AI智能体的核心定义与技
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f