- Python训练营打卡Day8(2025.4.27)
2301_80505456
python算法开发语言
知识点见示例代码字典的简单介绍标签编码连续特征的处理:归一化和标准化至此,常见的预处理方式都说完了作业:对心脏病数据集的特征用上述知识完成,一次性用所有的处理方式完成预处理,尝试手动完成,多敲几遍代码。由于所给数据集已是处理过的数据集,以下将按所给数据集的处理情况对连续特征进行归一化和标准化。首先观察数据,需处理数据共有5列,分别是:age,trestbps,chol,thalach,oldpea
- DAY 10 机器学习建模与评估
心落薄荷糖
Python训练营机器学习人工智能
知识点:1.数据集的划分2.机器学习模型建模的三行代码3.机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估#一、导入库importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。impor
- Python学习Day10
m0_64472246
python打卡学习python
学习来源:@浙大疏锦行知识点:数据集的划分机器学习模型建模的三行代码机器学习模型分类问题的评估对心脏病数据集采用机器学习模型建模和评估importpandasaspdfile_path="heart.csv"data=pd.read_csv(file_path)data.info()data.isnull().sum()#划分训练集和测试机fromsklearn.model_selectionim
- C# TCP心跳机制:让客户端拥有“不死之身”,网络波动?不存在的!
墨夶
C#学习资料网络c#tcp/ip
1.TCP连接的“心脏病”与心跳的救赎监控面板上的“连接断开”提示,突然发现游戏服务器的玩家都在“消失”——原来TCP连接在深夜的网络波动中“猝死”了!2.从“心跳骤停”到“永不掉线”的重生之路2.1原理篇:心跳机制的“三重防护”核心概念:心跳包:客户端定时发送的“我还在”信号(如{"type":"heartbeat"})超时检测:如果超过HeartbeatTimeout秒未收到心跳响应,触发断开
- day53python打卡
qq_58459892
py打开学习pytorch人工智能算法深度学习python
知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象ps;如果你学有余力,对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。一、G
- python打卡day53@浙大疏锦行
风逸hhh
python打卡60天行动python开发语言
知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象ps;如果你学有余力,对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。一、数
- 打卡Day53
月宝好q
python60天打卡深度学习人工智能python
知识点:1.对抗生成网络的思想:关注损失从何而来2.生成器、判别器3.nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法4.leakyReLU介绍:避免relu的神经元失活现象ps:如果你学有余力,对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数
- DAY 53 对抗生成网络
MasterLLL0228
Python入门(坚持)人工智能
知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象ps;如果你学有余力,对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。imp
- python打卡day31
今日的示例代码包含2个部分1.notebook文件夹内的ipynb文件,介绍下今天的思路2.项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾1.规范的文件命名2.规范的文件夹管理3.机器学习项目的拆分4.编码格式和类型注解作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。@疏锦行
- Python打卡第53天
猛犸MAMMOTH
Python打卡60天python深度学习开发语言
@浙大疏锦行作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。importpandasaspdimportnumpyasnpimporttorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.preprocessingimportMinMaxScalerfromskle
- 10、 动态学习调度算法与多层感知器模型用于心脏病预测系统
丛越
动态学习调度算法DLSA多层感知器
动态学习调度算法与多层感知器模型用于心脏病预测系统1.引言心脏病是全球公共卫生的重大挑战,每年导致数百万人死亡。为了应对这一问题,研究人员一直在寻找更有效的预测方法,以实现早期检测和预防。数据挖掘和机器学习技术为心脏病预测提供了新的可能性。通过利用大规模和多样化的数据集,研究人员可以开发出更加准确和可靠的预测模型。本文将详细介绍动态学习调度算法(DynamicLearningSchedulingA
- python训练营打卡第31天
文件的规范拆分和写法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。补充介绍:pyc文件的介绍知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解昨天我们已经介绍了如何在不同的文件中,导入其他目录的文件,核心在于了解导入方式和python解释器检索目录的方式。搞清楚了
- 60天python训练计划----day31
尘浮728
python机器学习深度学习
DAY31文件的规范拆分和写法今日的示例代码包含2个部分notebook文件夹内的ipynb文件,介绍下今天的思路项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。#
- 【深度学习——RNN心脏病预测】
豆浆油条sq
深度学习rnn人工智能
本文为365天深度学习训练营中的学习记录博客参考文章:深度学习100例-循环神经网络(RNN)心脏病预测原作者:K同学啊|接辅导、项目定制难度:新手入门⭐要求:本地读取并加载数据。了解循环神经网络(RNN)的构建过程测试集accuracy到达87%拔高:测试集accuracy到达89%我的环境:语言环境:Python3.7编译器:Spyder深度学习框架:TensorFlow2.4.1数据地址:百
- 5.20 打卡
分散406
人工智能
DAY31文件的规范拆分和写法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。heart_disease_prediction/│├──data/#数据文件夹│├──raw/#原始数据││└──heart.csv#120mg/dl(0/1)'restecg',#静息心电图结果(0/1/2)'
- 第十天python打卡
zdy1263574688
python打卡python开发语言
机器学习建模与评估知识点:数据集的划分机器学习模型建模的三行代码机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。importma
- 逻辑回归损失函数推导
denghong637573
数据结构与算法人工智能
引言假设今天希望将机器学习应用到医院中去,比如对于某一个患了心脏病的病人,求他3个月之后病危的概率。那么我们该选择哪一个模型,或者可以尝试已经学过的线性回归?但是很遗憾的是,如果我们要利用线性回归,我们收集到的资料中应当包含病人3个月后病危的概率。这在实际中是很难得到的,因为对于一个患病的病人,你只能知道他3个月后到底是病危或者存活。所以线性回归并不适用这种场景。logistic函数上面提到我们最
- 心脏病预测利器:基于机器学习的智能分析系统
松京焕Max
心脏病预测利器:基于机器学习的智能分析系统【下载地址】使用机器学习识别心脏病预测本项目专注于通过数据分析与机器学习算法来增强心脏病预测的能力。在当前医疗健康领域,数据驱动的方法已经成为提升疾病预防和治疗效果的关键。本项目采用真实的心脏病患者数据集,经过细致的数据清洗和预处理阶段,为模型的训练打下坚实基础项目地址:https://gitcode.com/open-source-toolkit/9a0
- DAY 8 标签编码与连续变量处理
HINOTOR_
Python训练营python开发语言
目录DAY8标签编码与连续变量处理1.字典的简单介绍2.标签编码3.连续特征的处理:归一化和标准化作业:对心脏病数据集的特征用上述知识完成,一次性用所有的处理方式完成预处理,尝试手动完成,多敲几遍代码。离散特征的处理:标签编码连续特征的处理:归一化和标准化DAY8标签编码与连续变量处理1.字典的简单介绍#使用花括号创建字典dict={"name":"Alice","age":25,"city":"
- Python打卡训练营day31——2025.05.20
莱茵菜苗
Python打卡python开发语言
知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。导入依赖库#忽视警告importwarningswarnings.simplefilter('ignore')#数据处理importnumpyasnpimportpandasaspd#数据可视化importmatplotlib.pyplotas
- day31 python打卡
ubax
python机器学习深度学习
作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。在有多级目录时,相对导入仅在同一包内有效,尤其在下级文件导入上级文件夹中的文件。#src/config.pyCONFIG={"data_path":PROJECT_ROOT/"data/raw/heart.csv","test_size":0.2,"random_state":42,"mo
- 第三十一天打卡
不爱吃山楂罐头
python打卡python
@浙大疏锦行今日的示例代码包含2个部分notebook文件夹内的ipynb文件,介绍下今天的思路项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。importosim
- 小白的进阶之路系列之二----人工智能从初步到精通pytorch中分类神经网络问题详解
金沙阳
人工智能pytorch神经网络分类
什么是分类问题?分类问题涉及到预测某物是一种还是另一种。例如,你可能想要:问题类型具体内容例子二元分类目标可以是两个选项之一,例如yes或no根据健康参数预测某人是否患有心脏病。多类分类目标可以是两个以上选项之一判断一张照片是食物、人还是狗。多标签分类目标可以被分配多个选项(标签)预测维基百科文章的分类(例如数学、科学和哲学)分类和回归是最常见的机器学习问题之一。在本笔记本中,我们将使用PyTor
- Python打卡DAY31
chicpopoo
浙大疏锦行打卡python机器学习
今日的示例代码包含2个部分notebook文件夹内的ipynb文件,介绍下今天的思路项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。src/data/data_lo
- python打卡day31@浙大疏锦行
风逸hhh
python开发语言
DAY31文件的规范拆分和写法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。一、导入数据库importnumpyasnpimportpandasaspd二、数据可视化importmatplotlib.pyplotaspltimportseabornassnsfromsklearn.ense
- Python打卡训练营day10
sak77
python打卡训练营python机器学习模型训练
机器学习建模与评估知识点:数据集的划分机器学习模型建模的三行代码机器学习模型分类问题的评估尝试对心脏病数据集采用机器学习模型建模和评估导入相关库,导入数据,划分数据集fromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportclassification_reportimportpandasaspddf=pd.
- Python打卡DAY19
chicpopoo
浙大疏锦行打卡python机器学习
常见的特征筛选算法方差筛选皮尔逊相关系数筛选lasso筛选树模型重要性shap重要性递归特征消除REF作业:对心脏病数据集完成特征筛选,对比精度importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。importmatplotlib.pyplotasplt#用于绘制各种类型的图表imp
- 5.08py打卡
丁值心
机器学习小白从0到1机器学习人工智能python开发语言支持向量机
@浙大疏锦行常见的特征筛选算法1.方差筛选2.皮尔逊相关系数筛选3.lasso筛选4.树模型重要性5.shap重要性6.递归特征消除REF题目:对心脏病数据集完成特征筛选,对比精度皮尔逊相关系数筛选可以显著提升模型效果0.84→0.88importpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。importmatplot
- Python训练营打卡DAY18
我想睡觉261
python机器学习人工智能
聚类后的分析:推断簇的类型知识点回顾:推断簇含义的2个思路:先选特征和后选特征通过可视化图形借助ai定义簇的含义科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。最开始用全部特征来聚类,把其余特征作为x,聚类得到的簇类别作为标签构建监督模型,进而根据重要性筛选特征,来确定要根据哪些特征赋予含义。最终大致分为5类:高血糖/非典型胸
- 8.5/Q1,Charls最新文章解读
医只鸡腿子
数据库回归随机森林数据仓库健康医疗
文章题目:Theassociationoftriglyceride-glucoseandtriglyceride-glucoserelatedindiceswiththeriskofheartdiseaseinanationalDOI:10.1186/s12933-025-02621-y中文标题:全国人群甘油三酯-葡萄糖及甘油三酯-葡萄糖相关指标与心脏病风险的关系发表杂志:CardiovascDi
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。