语音、机器学习环境搭建记录

前言

上一个 docker 容器让我安装奇奇怪怪的库的时候,动了一个系统库的文件,然后之间用的 ohmyzsh 给崩了……正好上一个容器忘了多开几个端口,这次重新搭建一个环境,把零零碎碎的东西记录下来。

正文

zsh & ohmyzsh

首先搭建好终端环境,不然之后 miniconda 安装之后再切 shell 环境还要有别的操作。

sudo apt install zsh

这里的安装,我之前在自己的 BLOG 网站有所记录:

https://haulyn5.cn/2021/10/26/ohmyzsh-installation/https://haulyn5.cn/2021/10/26/ohmyzsh-installation/

miniconda

下载地址:

Miniconda — conda documentationhttps://docs.conda.io/en/latest/miniconda.html#linux-installers我是 Ubuntu 的环境,下载了 Miniconda3 Linux 64-bit 。下载之后得到一个 bash 文件,可以检查一下 hash。

sha256sum Miniconda3-latest-Linux-x86_64.sh

输出结果

78f39f9bae971ec1ae7969f0516017f2413f17796670f7040725dd83fcff5689  Miniconda3-latest-Linux-x86_64.sh
可以看到与官网提供的校验值一致。

zsh Miniconda3-latest-Linux-x86_64.sh

注意用什么 shell 这里就写什么,比如使用 bash 就修改 zsh 为 bash。然后会弹出一大段的 License,读完之后输入 yes 同意,然后回车确认安装路径,然后 yes  执行 conda init 。然后重新启动终端,就 OK 了。然后更新一下 conda。

conda update conda

然后如果需要换源,参考 

conda换源 - 知乎Windows下 1. conda源更换为清华源Anaconda 是一个用于科学计算的 Python 发行版,支持 Linux, Mac, Windows, 包含了众多流行的科学计算、数据分析的 Python 包。 Anaconda 安装包可以到 https://mirrors.tuna.tsi…https://zhuanlan.zhihu.com/p/87123943如果将环境从旧机器上转移到新机器上,参考:

Anaconda | Moving Conda EnvironmentsConda is known as a package manager for Python and R packages produced by Anaconda, Inc. and conda-forge, the open-source community for conda Python…https://www.anaconda.com/blog/moving-conda-environments

旧机器:(-f 指定输出文件名,-n 指定env名) 

conda env export -f conda-coqui-environment.yml -n coqui

新机器:

conda env create -f conda_coqui_env.yml

我这里的 yml 内容是:

name: coqui
channels:
  - nvidia
  - conda-forge
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _openmp_mutex=4.5=1_gnu
  - argon2-cffi=21.3.0=pyhd3eb1b0_0
  - argon2-cffi-bindings=21.2.0=py38h7f8727e_0
  - asttokens=2.0.5=pyhd3eb1b0_0
  - attrs=21.4.0=pyhd3eb1b0_0
  - backcall=0.2.0=pyhd3eb1b0_0
  - bc=1.07.1=h516909a_0
  - blas=1.0=mkl
  - bleach=4.1.0=pyhd3eb1b0_0
  - brotli=1.0.9=he6710b0_2
  - brotlipy=0.7.0=py38h27cfd23_1003
  - ca-certificates=2022.4.26=h06a4308_0
  - certifi=2022.6.15=py38h06a4308_0
  - cffi=1.15.0=py38hd667e15_1
  - charset-normalizer=2.0.4=pyhd3eb1b0_0
  - conda-package-handling=1.7.3=py38h27cfd23_1
  - cryptography=36.0.0=py38h9ce1e76_0
  - cudatoolkit=11.1.74=h6bb024c_0
  - cycler=0.11.0=pyhd3eb1b0_0
  - dbus=1.13.18=hb2f20db_0
  - debugpy=1.5.1=py38h295c915_0
  - decorator=5.1.1=pyhd3eb1b0_0
  - defusedxml=0.7.1=pyhd3eb1b0_0
  - executing=0.8.3=pyhd3eb1b0_0
  - expat=2.4.4=h295c915_0
  - fontconfig=2.13.1=h6c09931_0
  - fonttools=4.25.0=pyhd3eb1b0_0
  - freetype=2.11.0=h70c0345_0
  - gflags=2.2.2=he1b5a44_1004
  - giflib=5.2.1=h7b6447c_0
  - glib=2.69.1=h4ff587b_1
  - gst-plugins-base=1.14.0=h8213a91_2
  - gstreamer=1.14.0=h28cd5cc_2
  - icu=58.2=he6710b0_3
  - importlib_metadata=4.8.2=hd3eb1b0_0
  - intel-openmp=2021.4.0=h06a4308_3561
  - ipykernel=6.9.1=py38h06a4308_0
  - ipython=8.1.1=py38h06a4308_0
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - jedi=0.18.1=py38h06a4308_1
  - jpeg=9e=h7f8727e_0
  - jupyter_client=7.1.2=pyhd3eb1b0_0
  - jupyter_core=4.9.2=py38h06a4308_0
  - jupyterlab_pygments=0.1.2=py_0
  - lcms2=2.12=h3be6417_0
  - ld_impl_linux-64=2.35.1=h7274673_9
  - libblas=3.9.0=12_linux64_mkl
  - libfaiss=1.7.1=cuda111hf54f04a_1_cuda
  - libffi=3.3=he6710b0_2
  - libgcc-ng=11.2.0=h1234567_1
  - libgfortran-ng=7.5.0=ha8ba4b0_17
  - libgfortran4=7.5.0=ha8ba4b0_17
  - libgomp=11.2.0=h1234567_1
  - liblapack=3.9.0=12_linux64_mkl
  - libpng=1.6.37=hbc83047_0
  - libprotobuf=3.19.1=h4ff587b_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=12.1.0=ha89aaad_16
  - libtiff=4.2.0=h85742a9_0
  - libuuid=1.0.3=h7f8727e_2
  - libuv=1.40.0=h7b6447c_0
  - libwebp=1.2.2=h55f646e_0
  - libwebp-base=1.2.2=h7f8727e_0
  - libxcb=1.15=h7f8727e_0
  - libxml2=2.9.12=h03d6c58_0
  - lz4-c=1.9.3=h295c915_1
  - matplotlib-base=3.5.1=py38ha18d171_1
  - mistune=0.8.4=py38h7b6447c_1000
  - mkl=2021.4.0=h06a4308_640
  - mkl-service=2.4.0=py38h7f8727e_0
  - mkl_fft=1.3.1=py38hd3c417c_0
  - mkl_random=1.2.2=py38h51133e4_0
  - munkres=1.1.4=py_0
  - nb_conda=2.2.1=py38h06a4308_1
  - nb_conda_kernels=2.3.1=py38h06a4308_0
  - nbclient=0.5.11=pyhd3eb1b0_0
  - nbformat=5.1.3=pyhd3eb1b0_0
  - ncurses=6.3=h7f8727e_2
  - ninja=1.10.2=py38hd09550d_3
  - notebook=6.4.8=py38h06a4308_0
  - numexpr=2.8.3=py38h807cd23_0
  - openssl=1.1.1p=h5eee18b_0
  - packaging=21.3=pyhd3eb1b0_0
  - pandocfilters=1.5.0=pyhd3eb1b0_0
  - parso=0.8.3=pyhd3eb1b0_0
  - pcre=8.45=h295c915_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - prometheus_client=0.13.1=pyhd3eb1b0_0
  - ptyprocess=0.7.0=pyhd3eb1b0_2
  - pure_eval=0.2.2=pyhd3eb1b0_0
  - pycosat=0.6.3=py38h7b6447c_1
  - pycparser=2.21=pyhd3eb1b0_0
  - pygments=2.11.2=pyhd3eb1b0_0
  - pyopenssl=22.0.0=pyhd3eb1b0_0
  - pyqt=5.9.2=py38h05f1152_4
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.12=h12debd9_0
  - python-dateutil=2.8.2=pyhd3eb1b0_0
  - python_abi=3.8=2_cp38
  - pytorch=1.10.1=py3.8_cuda11.1_cudnn8.0.5_0
  - pytorch-mutex=1.0=cuda
  - pyzmq=22.3.0=py38h295c915_2
  - qt=5.9.7=h5867ecd_1
  - readline=8.1.2=h7f8727e_1
  - ruamel_yaml=0.15.100=py38h27cfd23_0
  - seaborn=0.11.2=pyhd3eb1b0_0
  - send2trash=1.8.0=pyhd3eb1b0_1
  - setuptools=58.0.4=py38h06a4308_0
  - sip=4.19.13=py38h295c915_0
  - six=1.16.0=pyhd3eb1b0_1
  - sqlite=3.37.2=hc218d9a_0
  - stack_data=0.2.0=pyhd3eb1b0_0
  - tensorboardx=2.2=pyhd3eb1b0_0
  - tk=8.6.11=h1ccaba5_0
  - torchaudio=0.10.1=py38_cu111
  - tornado=6.1=py38h27cfd23_0
  - tqdm=4.62.3=pyhd3eb1b0_1
  - traitlets=5.1.1=pyhd3eb1b0_0
  - tsnecuda=3.0.1=cuda111py38h1f61482_0
  - typing-extensions=3.10.0.2=hd3eb1b0_0
  - typing_extensions=3.10.0.2=pyh06a4308_0
  - urllib3=1.26.8=pyhd3eb1b0_0
  - wcwidth=0.2.5=pyhd3eb1b0_0
  - wheel=0.37.1=pyhd3eb1b0_0
  - xz=5.2.5=h7b6447c_0
  - yaml=0.2.5=h7b6447c_0
  - zeromq=4.3.4=h2531618_0
  - zipp=3.7.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7f8727e_4
  - zstd=1.4.9=haebb681_0
  - pip:
    - absl-py==1.0.0
    - antlr4-python3-runtime==4.8
    - anyascii==0.3.1
    - appdirs==1.4.4
    - audioread==2.1.9
    - babel==2.10.3
    - backports-zoneinfo==0.2.1
    - beautifulsoup4==4.10.0
    - bitarray==2.6.0
    - bottleneck==1.3.2
    - cachetools==5.0.0
    - chardet==4.0.0
    - ci-sdr==0.0.0
    - click==8.0.3
    - colorama==0.4.4
    - configargparse==1.5.3
    - coqpit==0.0.16
    - ctc-segmentation==1.7.1
    - cython==0.29.28
    - d2l==0.17.3
    - dateparser==1.1.1
    - distance==0.1.3
    - docker-pycreds==0.4.0
    - docopt==0.6.2
    - editdistance==0.5.2
    - einops==0.4.0
    - entrypoints==0.4
    - espnet-model-zoo==0.1.7
    - espnet-tts-frontend==0.0.3
    - fairscale==0.4.5
    - fastdtw==0.3.4
    - ffmpeg-python==0.2.0
    - filelock==3.6.0
    - flask==2.2.2
    - fsspec==2022.8.2
    - future==0.18.2
    - g2p-en==2.1.0
    - gdown==4.3.0
    - gitdb==4.0.9
    - gitpython==3.1.26
    - google-auth==2.6.0
    - google-auth-oauthlib==0.4.6
    - grpcio==1.44.0
    - gruut==2.2.3
    - gruut-ipa==0.13.0
    - gruut-lang-cs==2.0.0
    - gruut-lang-de==2.0.0
    - gruut-lang-en==2.0.0
    - gruut-lang-es==2.0.0
    - gruut-lang-fr==2.0.2
    - gruut-lang-it==2.0.0
    - gruut-lang-nl==2.0.2
    - gruut-lang-pt==2.0.0
    - gruut-lang-ru==2.0.0
    - gruut-lang-sv==2.0.0
    - h5py==3.6.0
    - huggingface-hub==0.4.0
    - humanfriendly==10.0
    - hydra-core==1.0.7
    - idna==2.10
    - importlib-metadata==4.11.1
    - importlib-resources==5.4.0
    - inflect==5.6.0
    - ipywidgets==7.6.5
    - itsdangerous==2.1.2
    - jaconv==0.3
    - jamo==0.4.1
    - jieba==0.42.1
    - jinja2==3.0.3
    - joblib==1.1.0
    - jsonlines==1.2.0
    - jsonschema==4.4.0
    - jupyter==1.0.0
    - jupyter-console==6.4.0
    - jupyterlab-widgets==1.0.2
    - kaldiio==2.17.2
    - kiwisolver==1.3.2
    - librosa==0.8.0
    - llvmlite==0.38.0
    - markdown==3.3.6
    - markupsafe==2.1.1
    - matplotlib==3.3.3
    - matplotlib-inline==0.1.3
    - mecab-python3==1.0.5
    - mir-eval==0.7
    - morfessor==2.0.6
    - musdb==0.4.0
    - museval==0.4.0
    - nara-wpe==0.0.7
    - nbconvert==6.4.2
    - nest-asyncio==1.5.4
    - networkx==2.8.6
    - nltk==3.7
    - nnmnkwii==0.1.1
    - num2words==0.5.12
    - numba==0.55.1
    - numpy==1.21.6
    - oauthlib==3.2.0
    - omegaconf==2.0.6
    - pandas==1.2.2
    - pathtools==0.1.2
    - pillow==9.0.1
    - pip==22.2.2
    - pooch==1.6.0
    - portalocker==2.4.0
    - promise==2.3
    - prompt-toolkit==3.0.28
    - protobuf==3.19.4
    - psutil==5.9.0
    - pyaml==21.10.1
    - pyasn1==0.4.8
    - pyasn1-modules==0.2.8
    - pynndescent==0.5.7
    - pyparsing==3.0.7
    - pypinyin==0.44.0
    - pyrsistent==0.18.1
    - pysbd==0.3.4
    - pysptk==0.1.20
    - pystoi==0.3.3
    - python-crfsuite==0.9.8
    - pytorch-ranger==0.1.1
    - pytorch-wpe==0.0.1
    - pytz==2021.3
    - pytz-deprecation-shim==0.1.0.post0
    - pyworld==0.2.10
    - pyyaml==6.0
    - qtconsole==5.2.2
    - qtpy==2.0.1
    - regex==2022.1.18
    - requests==2.25.1
    - requests-oauthlib==1.3.1
    - resampy==0.2.2
    - rsa==4.8
    - sacrebleu==2.0.0
    - scikit-learn==1.0.2
    - scipy==1.8.0
    - sentencepiece==0.1.96
    - sentry-sdk==1.5.5
    - shortuuid==1.0.8
    - simplejson==3.17.6
    - smmap==5.0.0
    - soundfile==0.10.3.post1
    - soupsieve==2.3.1
    - stempeg==0.2.3
    - tabulate==0.8.9
    - tensorboard==2.8.0
    - tensorboard-data-server==0.6.1
    - tensorboard-plugin-wit==1.8.1
    - termcolor==1.1.0
    - terminado==0.13.2
    - testpath==0.6.0
    - threadpoolctl==3.1.0
    - torch-complex==0.2.1
    - torch-optimizer==0.3.0
    - torch-tb-profiler==0.4.0
    - torchinfo==1.6.3
    - trainer==0.0.14
    - tts==0.8.0
    - typeguard==2.13.3
    - tzdata==2022.2
    - tzlocal==4.2
    - umap-learn==0.5.1
    - unidecode==1.3.2
    - unidic-lite==1.0.8
    - wandb==0.12.10
    - webencodings==0.5.1
    - werkzeug==2.2.2
    - widgetsnbextension==3.5.2
    - yaspin==2.1.0
    - youtube-dl==2021.12.17
prefix: /root/miniconda3/envs/coqui

接下来就是漫长的等待了。然后 2分钟后报错,说 pytorch的依赖解析有问题。

emmm 好吧,只好手动安了,参照我之前的博客进行。

conda 配置深度学习环境 pytorch transformers_Haulyn5的博客-CSDN博客最近想学习一下 Huggingface 的 Transformers 库的使用,需要重新搭建一个虚拟环境,做简单记录方便之后工作。这次搭建主要是平时测试和玩的环境,不考虑为某某应用兼容用低版本,看一眼 python 的版本。 差不多是一年一个小版本号呀,3.7 再有一年停止维护了,打算用 3.8 了。create 命令创建环境。这里 miniconda 的安装,还有 channel 的设置就不赘述了。提示 conda 需要更新,顺手更新一下 conda。❯ python --versionPyhttps://blog.csdn.net/Haulyn5/article/details/125486589

conda install cudatoolkit=11.1 -c nvidia

注意这里的安装,他读条会显示一直是 0%,不要担心,等着就好了,大约几分钟会一下子跳到 100% 。

语音、机器学习环境搭建记录_第1张图片

 我这里用时 4 分钟不到。

conda install pytorch=1.10.1 -c pytorch

语音、机器学习环境搭建记录_第2张图片

 Coqui TTS

pip install TTS

但是没想到程序下载了半个小时后,又在下 torch,太奇怪了。ctrl+c 取消,重新下载。

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install TTS

没想到又要重新下载,不过这次速度快很多,也还好。最后用了 10 分钟共计。

很玄学,pip 把我安装的 1.10.1 的 torch 卸载了,而在上一个环境安装时没有。新安装的 '1.12.1+cu102' 居然可以用 CUDA,玄学了。

测试 tts 命令,再次报错。sndfile library not found

Traceback (most recent call last):
  File "~/miniconda3/envs/dev38/bin/tts", line 5, in 
    from TTS.bin.synthesize import main
  File "~/miniconda3/envs/dev38/lib/python3.8/site-packages/TTS/bin/synthesize.py", line 12, in 
    from TTS.utils.synthesizer import Synthesizer
  File "~/miniconda3/envs/dev38/lib/python3.8/site-packages/TTS/utils/synthesizer.py", line 14, in 
    from TTS.utils.audio import AudioProcessor
  File "~/miniconda3/envs/dev38/lib/python3.8/site-packages/TTS/utils/audio/__init__.py", line 1, in 
    from TTS.utils.audio.processor import AudioProcessor
  File "~/miniconda3/envs/dev38/lib/python3.8/site-packages/TTS/utils/audio/processor.py", line 3, in 
    import librosa
  File "~/miniconda3/envs/dev38/lib/python3.8/site-packages/librosa/__init__.py", line 211, in 
    from . import core
  File "~/miniconda3/envs/dev38/lib/python3.8/site-packages/librosa/core/__init__.py", line 6, in 
    from .audio import *  # pylint: disable=wildcard-import
  File "~/miniconda3/envs/dev38/lib/python3.8/site-packages/librosa/core/audio.py", line 8, in 
    import soundfile as sf
  File "~/miniconda3/envs/dev38/lib/python3.8/site-packages/soundfile.py", line 142, in 
    raise OSError('sndfile library not found')
OSError: sndfile library not found

参照 https://www.jianshu.com/p/cc1a10a79cfa, 解决方法:

sudo apt-get install libsndfile1

然后再次测试

tts --text "Hello, this is Tom, a cat who never catch mice." --out_path ~/tmp.wav

ok 可以使用。

你可能感兴趣的:(常用库安装配置记录,linux,python,运维)