【交通标志识别】Hog+SVM路标检测与识别【含Matlab源码 1715期】

⛄一、SVM路标检测识别简介

1 路标识别
完整的路标识别系统包括:图像的获取与预处理,图像分割(路标定位),特征提取,模式分类(路标识别)等部分。其中模式分类是系统的关键技术。较常用的模式分类方法是神经网络分类器。神经网络是目前应用最广也是最成功的学习算法之一,具有较强的容错行和自适应学习能力。然而神经网络采用的经验风险最小化准则(empirical risk minimization, ERM),虽然可使训练误差最小化,但并不能最小化学习过程的泛化误差。实际应用中神经网络常出现的问题:1) 更易出现局部最小值;2) 其输出的假设规模经常可能大到不切实际;3) 如果训练样本的数目有限,过大的假设函数类将导致过拟合;4) 常受到大量参数的控制,参数的选择往往是通过启发式的参数调节过程。

2 支持向量机
2.1 两类模式问题

SVM基于SRM准则构造最优超平面,使每类数据之间间隔最大,同时保持分类误差尽可能小。Cover定理指出:一个复杂的模式识别分类问题,在高维空间比低维空间更容易线性可分。实际上SVM实现了这样的思想:通过某种非线性映射(可以是未知的)将样本特征向量x映射到一个高维特征空间,然后在这个空间中构造最优分类超平面。

对简单的两模式分类,SVM算法可归结为:
通过非线性变换φ:x→φ (x) ,将模式数据映射到高维特征空间,构造分类超平面,表示为决策面:

你可能感兴趣的:(Matlab图像处理(进阶版),matlab)