阿菊的OpenCv7——一分钟了解特征检测中的角点(Corner)以及斑点(blob)

阿菊的OpenCv——一分钟了解特征检测中的角点以及斑点

  • 1.角点
  • 2. 斑点
  • 参考文献:

1.角点

通常意义上来说,角点就是极值点,即在某方面属性特别突出的点,是在某些属性上强度最大或者最小的孤立点、线段的终点。 对于图像而言,如图所示圆圈内的部分,即为图像的角点,其是物体轮廓线的连接点。

阿菊的OpenCv7——一分钟了解特征检测中的角点(Corner)以及斑点(blob)_第1张图片

以下是关于角点的几种具体描述:

  • 一阶导数(即灰度的梯度)的局部最大所对应的像素点;
  • 两条及两条以上边缘的交点;
  • 图像中梯度值和梯度方向的变化速率都很高的点;
  • 角点处的一阶导数最大,二阶导数为零,指示物体边缘变化不连续的方向。

阿菊的OpenCv7——一分钟了解特征检测中的角点(Corner)以及斑点(blob)_第2张图片
角点检测算法基本思想是使用一个固定窗口(取某个像素的一个邻域窗口)在图像上进行任意方向上的滑动,比较滑动前与滑动后两种情况,窗口中的像素灰度变化程度,如果存在任意方向上的滑动,都有着较大灰度变化,那么我们可以认为该窗口中存在角点。

角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。角点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。 对于同一场景,即使视角发生变化,通常具备稳定性质的特征。我们可以利用这一稳定的性质将角点应用三维场景重建运动估计,目标跟踪、目标识别、图像配准与匹配等计算机视觉领域。

2. 斑点

斑点是指二维图像中和周围颜色有颜色差异和灰度差异的区域,因为斑点代表的是一个区域,所以其相对于单纯的角点,具有更好的稳定性和更好的抗干扰能力。

在实际地图中,往往存在着大量这样的斑点,如一颗树是一个斑点,一块草地是一个斑点,一栋房子也可以是一个斑点。由于斑点代表的是一个区域,相比单纯的角点,它的稳定性要好,抗噪声能力要强,所以它在图像配准上扮演了很重要的角色。同时有时图像中的斑点也是我们关心的区域,比如在医学与生物领域,我们需要从一些X光照片或细胞显微照片中提取一些具有特殊意义的斑点的位置或数量。

参考文献:

1.角点(corner point)、关键点(key point)、特征点(feature point)概念辨析

你可能感兴趣的:(阿菊的OpenCv,计算机视觉,opencv,人工智能,算法,角点和斑点)