B02_NumPy数据属性(ndarray.ndim,ndarray.shape,ndarray.itemsize,ndarray.flags)

NumPy数组属性

本章节我们将来了解 NumPy 数组的一些基本属性。

NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

NumPy 的数组中比较重要 ndarray 对象属性有:

属性 说明
ndarray.ndim 秩,即轴的数量或维度的数量
ndarray.shape 数组的维度,对于矩阵,n行m列
ndarray.size 数组元素的总个数,相当于.shape中的 n * m的值
ndarray.dtype ndarray对象的元素类型
ndarray.itemsize ndarray对象中每个元素的大小,以字节为单位
ndarray.flags ndarray对象的内存信息
ndarray.real ndarray元素的实部
ndarray.imag ndarray元素的虚部
ndarray.data 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

ndarray.ndim

ndarray.ndim用于返回数组的维数,等于秩。

import numpy as np

a = np.arange(24)
print(a)
print("-----------")
print(a.ndim)     # a  现只有一个维度
print("-----------")
#现在调整其大小
b = a.reshape(2,4,3)   # b现在拥有三个维度
print(b)
print("----------")
print(b.ndim)

输出结果:

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
-----------
1
-----------
[[[ 0  1  2]
  [ 3  4  5]
  [ 6  7  8]
  [ 9 10 11]]
 [[12 13 14]
  [15 16 17]
  [18 19 20]
  [21 22 23]]]
----------
3

ndarray.shape

ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。

ndarray.shape 也可以用于调整数组大小。

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
print(a.shape)

输出结果为:

(2, 3)

调整数组大小

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
a.shape = (2,3)
print(a)

输出结果:

[[1 2 3]
 [4 5 6]]

NumPy也提供了reshape函数来调整数组大小

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print(b)

输出结果为:

[[1 2]
 [3 4]
 [5 6]]

ndarray.itemsize

ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。

例如,一个元素类型为 float64 的数组 itemsiz 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8)。

import numpy as np

# 数组的 dtype 为 int8(一个字节)
x = np.array([1, 2, 3, 4, 5], dtype=np.int8)
print(x.itemsize)

# 数组的 dtype 现在为 float64(八个字节)
y = np.array([1, 2, 3, 4, 5], dtype=np.float64)
print(y.itemsize)

输出结果为:

1
8

ndarray.flags

ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:

属性 描述
C_CONTIGUOUS © 数据是在一个单一的C风格的连续段中
F_CONTIGUOUS (F) 数据是在一个单一的Fortran风格的连续段中
OWNDATA (O) 数组拥有它所使用的内存或从另一个对象中借用它
WRITEABLE (W) 数据区域可以被写入,将该值设置为 False,则数据为只读
ALIGNED (A) 数据和所有元素都适当地对齐到硬件上
UPDATEIFCOPY (U) 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新

实例:

import numpy as np

x = np.array([1,2,3,4,5])
print(x.flags)

输出结果为:

  C_CONTIGUOUS : True
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False

你可能感兴趣的:(#,Numpy(数值计算库))