RGB&深度图转换成点云-三维重建001

最近做实验,想实现深度估计到三维点云再到网格的生成,第一步做出深度图结合RGB图生成三维点云,感觉效果凑合,

供大家欣赏!

RGB室内图:

Depth Image:(隐隐约约能过看到点什么)

生成的结果:

转个角度:

结果很粗糙,感觉这个方法不是很理想,也就是通过深度估计得到的深度图转换成点云的想法不太靠谱!

代码如下:(需要安装open3d)

from PIL import Image
import pandas as pd
import numpy as np
from open3d import read_point_cloud, draw_geometries
import time


class point_cloud_generator():

    def __init__(self, rgb_file, depth_file, pc_file, focal_length, scalingfactor):
        self.rgb_file = rgb_file
        self.depth_file = depth_file
        self.pc_file = pc_file
        self.focal_length = focal_length
        self.scalingfactor = scalingfactor
        self.rgb = Image.open(rgb_file)
        self.depth = Image.open(depth_file).convert('I')
        self.width = self.rgb.size[0]
        self.height = self.rgb.size[1]

    def calculate(self):
        t1=time.time()
        depth = np.asarray(self.depth).T
        self.Z = depth / self.scalingfactor
        X = np.zeros((self.width, self.height))
        Y = np.zeros((self.width, self.height))
        for i in range(self.width):
            X[i, :] = np.full(X.shape[1], i)

        self.X = ((X - self.width / 2) * self.Z) / self.focal_length
        for i in range(self.height):
            Y[:, i] = np.full(Y.shape[0], i)
        self.Y = ((Y - self.height / 2) * self.Z) / self.focal_length

        df=np.zeros((6,self.width*self.height))
        df[0] = self.X.T.reshape(-1)
        df[1] = -self.Y.T.reshape(-1)
        df[2] = -self.Z.T.reshape(-1)
        img = np.array(self.rgb)
        df[3] = img[:, :, 0:1].reshape(-1)
        df[4] = img[:, :, 1:2].reshape(-1)
        df[5] = img[:, :, 2:3].reshape(-1)
        self.df=df
        t2=time.time()
        print('calcualte 3d point cloud Done.',t2-t1)

    def write_ply(self):
        t1=time.time()
        float_formatter = lambda x: "%.4f" % x
        points =[]
        for i in self.df.T:
            points.append("{} {} {} {} {} {} 0\n".format
                          (float_formatter(i[0]), float_formatter(i[1]), float_formatter(i[2]),
                           int(i[3]), int(i[4]), int(i[5])))

        file = open(self.pc_file, "w")
        file.write('''ply
        format ascii 1.0
        element vertex %d
        property float x
        property float y
        property float z
        property uchar red
        property uchar green
        property uchar blue
        property uchar alpha
        end_header
        %s
        ''' % (len(points), "".join(points)))
        file.close()

        t2=time.time()
        print("Write into .ply file Done.",t2-t1)

    def show_point_cloud(self):
        pcd = read_point_cloud(self.pc_file)
        draw_geometries([pcd])

a = point_cloud_generator('01446_colors.png', '01446_depth.png', '01446_3d.ply',
                          focal_length=300, scalingfactor=1000)
a.calculate()
a.write_ply()
a.show_point_cloud()
df = a.df
np.save('pc.npy',df)

三维交流群,免费入群交流!为了学习用,大家有疑问想学习可以加入群:903635982

RGB&深度图转换成点云-三维重建001_第1张图片

 

你可能感兴趣的:(python,Deep,Learning,python,三维重建,深度学习,机器学习)