Go语言 Mutex 源码解析

今天看群里讨论mutex的实现,正好学习到这里,基于go.15的源码写了一些个人意见,错误之处欢迎留言指正哈。

// A Mutex is a mutual exclusion lock.
// The zero value for a Mutex is an unlocked mutex.
//
// A Mutex must not be copied after first use.
type Mutex struct {
    state int32
    sema  uint32
}

// A Locker represents an object that can be locked and unlocked.
type Locker interface {
    Lock()
    Unlock()
}

const (
    mutexLocked = 1 << iota // mutex is locked
    mutexWoken
    mutexStarving
    mutexWaiterShift = iota

    // Mutex fairness.
    //
    // Mutex can be in 2 modes of operations: normal and starvation.
    // In normal mode waiters are queued in FIFO order, but a woken up waiter
    // does not own the mutex and competes with new arriving goroutines over
    // the ownership. New arriving goroutines have an advantage -- they are
    // already running on CPU and there can be lots of them, so a woken up
    // waiter has good chances of losing. In such case it is queued at front
    // of the wait queue. If a waiter fails to acquire the mutex for more than 1ms,
    // it switches mutex to the starvation mode.
    //
    // In starvation mode ownership of the mutex is directly handed off from
    // the unlocking goroutine to the waiter at the front of the queue.
    // New arriving goroutines don't try to acquire the mutex even if it appears
    // to be unlocked, and don't try to spin. Instead they queue themselves at
    // the tail of the wait queue.
    //
    // If a waiter receives ownership of the mutex and sees that either
    // (1) it is the last waiter in the queue, or (2) it waited for less than 1 ms,
    // it switches mutex back to normal operation mode.
    //
    // Normal mode has considerably better performance as a goroutine can acquire
    // a mutex several times in a row even if there are blocked waiters.
    // Starvation mode is important to prevent pathological cases of tail latency.
    starvationThresholdNs = 1e6
)

// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex) Lock() {
    // Fast path: grab unlocked mutex.
    if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
        if race.Enabled {
            race.Acquire(unsafe.Pointer(m))
        }
        return
    }
    // Slow path (outlined so that the fast path can be inlined)
    m.lockSlow()
}

func (m *Mutex) lockSlow() {
    var waitStartTime int64 // 等待时间
    starving := false       // 是否饥饿
    awoke := false          // 是否唤醒
    iter := 0               // 自旋次数
    // state 是一个复合型的字段,
    // 一个字段包含多个意义,这样可以通过尽可能少的内存来实现互斥锁。
    // 这个字段的第一位(最小的一位)来表示这个锁是否被持有,
    // 第二位代表是否有唤醒的 goroutine,
    // 第三位代表饥饿状态,
    // 剩余的位数代表的是等待此锁的 goroutine 数(阻塞等待的waiter数量)
    old := m.state          // 记住之前锁的状态
    // 死循环阻塞住一直等获取到锁 (能够走到break退出这个循环就是拿到锁了)
    for {
        // Don't spin in starvation mode, ownership is handed off to waiters
        // so we won't be able to acquire the mutex anyway.
        // 饥饿状态下不自旋
        // runtime_canSpin判断是否可以自旋,主要是多核机器 GOMAXPROCS > 1 至少有一个运行的 P 且本地队列为空
        // Spin only few times and only if running on a multicore machine and
        // GOMAXPROCS>1 and there is at least one other running P and local runq is empty
        // iter自旋次数 < 4 (总共自旋4次)
        if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
            // 非饥饿状态下的自旋逻辑

            // Active spinning makes sense.
            // Try to set mutexWoken flag to inform Unlock
            // to not wake other blocked goroutines.
            // 设置唤醒标志用来通知 Unlock 时不要唤醒其他被阻塞的 goroutines
            // 还没唤醒 && 存在等待的goroutines && cas 操作成功
            if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
                atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
                awoke = true
            }
            // 汇编实现的 PAUSE 指令(asm_amd64.s procyield)看不太懂 网上这么说
            // PAUSE 指令什么都不会做,但是会消耗 CPU 时间,每次自旋都会调用 30 次 PAUSE
            runtime_doSpin()
            iter++
            old = m.state  // 再次获取锁的状态,用于后面检测锁是否被释放了
            continue
        }
        new := old      // 之前锁的状态赋值给新状态
        // Don't try to acquire starving mutex, new arriving goroutines must queue.
        // 不要尝试获取一个饥饿状态的锁,新来的goroutines放在等待队列里
        if old&mutexStarving == 0 {
            // 非饥饿 new 锁定状态即可
            new |= mutexLocked
        }
        // 不管是锁定还是饥饿状态 waiter 数量加 1
        if old&(mutexLocked|mutexStarving) != 0 {
            new += 1 << mutexWaiterShift
        }
        // The current goroutine switches mutex to starvation mode. 当前的 g 切换 锁到饥饿模式
        // But if the mutex is currently unlocked, don't do the switch. 如果当前的锁是已释放的状态就不需要切换
        // Unlock expects that starving mutex has waiters, which will not
        // be true in this case.
        // 已经饥饿 并且 之前的锁还是未释放
        if starving && old&mutexLocked != 0 {
            // 设置饥饿状态
            new |= mutexStarving
        }
        if awoke {
            // The goroutine has been woken from sleep,
            // so we need to reset the flag in either case.
            // 不管什么情况 g 从 sleep被唤醒 都需要清除唤醒标记
            if new&mutexWoken == 0 {
                throw("sync: inconsistent mutex state")
            }
            new &^= mutexWoken // 新状态清除唤醒标记
        }
        // cas 操作设置锁的新状态覆盖老状态
        if atomic.CompareAndSwapInt32(&m.state, old, new) {
            if old&(mutexLocked|mutexStarving) == 0 {
                // 锁已释放并且不是饥饿状态,代表其他 g 调用了Unlock 正常请求到了锁 直接返回
                // 判断饥饿状态是为了接着走下去 照顾已经饥饿的 g 不然极端情况每次都被新来的 g 拿到锁 饥饿的就完全阻塞住了
                break // locked the mutex with CAS
            }
            // If we were already waiting before, queue at the front of the queue.
            // 如果以前就在等待了,加入到队列头
            queueLifo := waitStartTime != 0
            if waitStartTime == 0 {
                // 没有等待时间 将当前时间复制给 等待时间
                waitStartTime = runtime_nanotime()
            }
            // 阻塞等待
            // runtime_SemacquireMutex 会在方法中循环不断调用 goparkunlock 将当前 Goroutine 陷入休眠等待信号量可以被获取就break
            // goparkunlock -> gopark -> mcall(park_m)->park_m -> schedule(新的调度循环)
            runtime_SemacquireMutex(&m.sema, queueLifo, 1)

            // Unlock 通过获取信号量唤醒
            // 调度唤醒之后检查锁是否应该处于饥饿状态  等待时间超过 1 ms
            starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
            old = m.state
            // 如果锁已经处于饥饿状态,直接抢到锁,返回
            if old&mutexStarving != 0 {
                // If this goroutine was woken and mutex is in starvation mode,
                // ownership was handed off to us but mutex is in somewhat
                // inconsistent state: mutexLocked is not set and we are still
                // accounted as waiter. Fix that.
                if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
                    throw("sync: inconsistent mutex state")
                }
                // 加锁并且将waiter数减1
                delta := int32(mutexLocked - 1<>mutexWaiterShift == 1 {
                    // Exit starvation mode.
                    // Critical to do it here and consider wait time.
                    // Starvation mode is so inefficient, that two goroutines
                    // can go lock-step infinitely once they switch mutex
                    // to starvation mode.
                    delta -= mutexStarving
                }
                atomic.AddInt32(&m.state, delta)
                break
            }
            // 唤醒之后 不是饥饿状态 进入下一次循环 尝试获取锁
            awoke = true
            // 自旋次数清 0
            iter = 0
        } else {
            //cas 操作设置锁的新状态覆盖老状态  失败了 老状态不变进行下一次循环
            old = m.state
        }
    }

    if race.Enabled {
        race.Acquire(unsafe.Pointer(m))
    }
}

// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {
    if race.Enabled {
        _ = m.state
        race.Release(unsafe.Pointer(m))
    }

    // Fast path: drop lock bit.
    // 直接使用 atomic 包提供的 AddInt32,如果返回的新状态不等于 0 就会进入 unlockSlow 方法
    new := atomic.AddInt32(&m.state, -mutexLocked)
    if new != 0 {
        // Outlined slow path to allow inlining the fast path.
        // To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
        m.unlockSlow(new)
    }
}

func (m *Mutex) unlockSlow(new int32) {
    // 先会对锁的状态进行校验,如果当前互斥锁已经被解锁过了就会直接抛出异常
    if (new+mutexLocked)&mutexLocked == 0 {
        throw("sync: unlock of unlocked mutex")
    }
    if new&mutexStarving == 0 {
        // 非饥饿状态
        old := new
        for {
            // If there are no waiters or a goroutine has already
            // been woken or grabbed the lock, no need to wake anyone.
            // In starvation mode ownership is directly handed off from unlocking
            // goroutine to the next waiter. We are not part of this chain,
            // since we did not observe mutexStarving when we unlocked the mutex above.
            // So get off the way.
            // 如果当前互斥锁不存在等待者或者最低三位表示的状态不都为 0,那么当前方法就不需要唤醒其他 Goroutine 可以直接返回
            if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
                return
            }
            // Grab the right to wake someone.
            // 当有 Goroutine 正在处于等待状态时,还是会通过 runtime_Semrelease 唤醒对应的 Goroutine 并移交锁的所有权
            new = (old - 1< sync_runtime_Semrelease -> semrelease1 ->
        // readyWithTime -> goready -> ready将 g 放到 p的runnext下次调度优先执行
        // 注意 handoff 为 true 的话 会调用 goyield 主动让出当前调度 这样就能尽快运行等待的 g


        // Starving mode: handoff mutex ownership to the next waiter, and yield
        // our time slice so that the next waiter can start to run immediately.
        // Note: mutexLocked is not set, the waiter will set it after wakeup.
        // But mutex is still considered locked if mutexStarving is set,
        // so new coming goroutines won't acquire it.
        runtime_Semrelease(&m.sema, true, 1)
    }
}

你可能感兴趣的:(Go语言 Mutex 源码解析)