深度学习的“灾难性遗忘“

目前DNN的优点是可以建立输入输出之间非常复杂的映射关系,用于识别、分类和预测。但是一旦学习阶段结束,它所能做的操作就固化了,既难以方便的学习新的映射,也不能对实际环境中存在情境信息(比如自身状态,环境变化、任务变化等)做出灵活的响应,难以满足复杂多变的需求,即缺少情境依赖学习(contextual-dependent learning)的能力。

一般而言,当前的DNN也受到“灾难性遗忘"问题的困扰,难以在学习新知识的同时保留旧知识,即缺少连续学习(continual learning)的能力。目前连续学习(也有很多其他的叫法,如终生学习等)在业界得到了很大的关注。

你可能感兴趣的:(深度学习)