✅作者简介:热爱国学的Java后端开发者,修心和技术同步精进。
个人主页:Java Fans的博客
个人信条:不迁怒,不贰过。小知识,大智慧。
当前专栏:前端开发者成长之路
✨特色专栏:国学周更-心性养成之路
本文内容:一文玩转Java 泛型知识
Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型。
泛型的本质是参数化类型,就是将类型由原来的具体的类型参数化,然后在使用时再指定此参数具体的值,那样这个类型就可以在使用时决定了。这种参数类型可以用在类、接口、方法中,分别称为泛型类、泛型接口、泛型方法。
假定我们有这样一个需求:写一个排序方法,能够对整型数组、字符串数组甚至其他任何类型的数组进行排序,该如何实现?
~
答案是可以使用 Java 泛型。
~
使用 Java 泛型的概念,我们可以写一个泛型方法来对一个对象数组排序。然后,调用该泛型方法来对整型数组、浮点数数组、字符串数组等进行排序。
泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用率。
【1】安全性
泛型的主要目标是提高 Java 程序的类型安全。通过知道使用泛型定义的变量的类型限制,编译器可以在一个高得多的程度上验证类型假设。没有泛型,这些假设就只存在于程序员的头脑中(或者如果幸运的话,还存在于代码注释中)。
比如:没有泛型的情况下使用集合:
public static void arrayList() {
ArrayList list = new ArrayList();
list.add("好好学习,天天向上");
list.add(5201314); //编译正常
}
有泛型的情况下使用集合:
public static void arrayList() {
ArrayList<String> list = new ArrayList<>();
list.add("好好学习,天天向上");
list.add(5201314); //编译不通过
}
有了泛型后,定义好的集合list在编译的时候add(5201314)就会编译不通过。
相当于告诉编译器每个集合接收的对象类型是什么,编译器在编译期就会做类型检查,告知是否插入了错误类型的对象,使得程序更加安全,增强了程序的健壮性。
【2】消除转换
消除强制类型转换。 泛型的一个附带好处是,消除源代码中的许多强制类型转换。这使得代码更加可读,并且减少了出错机会。
比如,以下没有泛型的代码段需要强制转换:
List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);
当重写为使用泛型时,代码不需要强制转换:
List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast
【3】提升性能
避免了不必要的装箱、拆箱操作,提高程序的性能,在非泛型编程中,将筒单类型作为Object传递时会引起Boxing(装箱)和Unboxing(拆箱)操作,这两个过程都是具有很大开销的。引入泛型后,就不必进行Boxing和Unboxing操作了,所以运行效率相对较高,特别在对集合操作非常频繁的系统中,这个特点带来的性能提升更加明显。
泛型变量固定了类型,使用的时候就已经知道是值类型还是引用类型,避免了不必要的装箱、拆箱操作。
使用泛型前:
//由于是object类型,会自动进行装箱操作。
object a=1;
//强制转换,拆箱操作。这样一去一来,当次数多了以后会影响程序的运行效率。
int b=(int)a;
使用泛型后:
public static T GetValue<T>(T a)
{
return a;
}
public static void Main()
{
//使用这个方法的时候已经指定了类型是int,所以不会有装箱和拆箱的操作。
int b=GetValue<int>(1);
}
【4】重用性
对于泛型的理解不应该只停留于Java 5之后提供的泛型的特性,只停留在可以使用菱形运算符或者带限制的通配符上面,对于泛型的理解应该基于泛型的思想,即对于代码的重用性的提高上面来。
比如可以使用Object类来表示泛型,使用接口类型表示泛型等。
你可以写一个泛型方法,该方法在调用时可以接收不同类型的参数。根据传递给泛型方法的参数类型,编译器适当地处理每一个方法调用。
定义泛型方法的规则:
所有泛型方法声明都有一个类型参数声明部分(由尖括号分隔),该类型参数声明部分在方法返回类型之前(在下面例子中的 )。
每一个类型参数声明部分包含一个或多个类型参数,参数间用逗号隔开。一个泛型参数,也被称为一个类型变量,是用于指定一个泛型类型名称的标识符。类型参数能被用来声明返回值类型,并且能作为泛型方法得到的实际参数类型的占位符。
泛型方法体的声明和其他方法一样。注意类型参数只能代表引用型类型,不能是原始类型(像 int、double、char 等)。
java 中泛型标记符:
- E - Element (在集合中使用,因为集合中存放的是元素)
- T - Type(Java 类)
- K - Key(键)
- V - Value(值)
- N - Number(数值类型)
- ? - 表示不确定的 java 类型
下面的例子演示了如何使用泛型方法打印不同类型的数组元素:
public class GenericMethodTest
{
// 泛型方法 printArray
public static < E > void printArray( E[] inputArray )
{
// 输出数组元素
for ( E element : inputArray ){
System.out.printf( "%s ", element );
}
System.out.println();
}
public static void main( String args[] )
{
// 创建不同类型数组: Integer, Double 和 Character
Integer[] intArray = { 1, 2, 3, 4, 5 };
Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4 };
Character[] charArray = { 'H', 'E', 'L', 'L', 'O' };
System.out.println( "整型数组元素为:" );
printArray( intArray ); // 传递一个整型数组
System.out.println( "\n双精度型数组元素为:" );
printArray( doubleArray ); // 传递一个双精度型数组
System.out.println( "\n字符型数组元素为:" );
printArray( charArray ); // 传递一个字符型数组
}
}
编译以上代码,运行结果如下所示:
整型数组元素为:
1 2 3 4 5
双精度型数组元素为:
1.1 2.2 3.3 4.4
字符型数组元素为:
H E L L O
有界的类型参数:
可能有时候,你会想限制那些被允许传递到一个类型参数的类型种类范围。例如,一个操作数字的方法可能只希望接受Number或者Number子类的实例。这就是有界类型参数的目的。
要声明一个有界的类型参数,首先列出类型参数的名称,后跟extends关键字,最后紧跟它的上界。
下面的例子演示了"extends"如何使用在一般意义上的意思"extends"(类)或者"implements"(接口)。该例子中的泛型方法返回三个可比较对象的最大值。
public class MaximumTest
{
// 比较三个值并返回最大值
public static <T extends Comparable<T>> T maximum(T x, T y, T z)
{
T max = x; // 假设x是初始最大值
if ( y.compareTo( max ) > 0 ){
max = y; //y 更大
}
if ( z.compareTo( max ) > 0 ){
max = z; // 现在 z 更大
}
return max; // 返回最大对象
}
public static void main( String args[] )
{
System.out.printf( "%d, %d 和 %d 中最大的数为 %d\n\n",
3, 4, 5, maximum( 3, 4, 5 ) );
System.out.printf( "%.1f, %.1f 和 %.1f 中最大的数为 %.1f\n\n",
6.6, 8.8, 7.7, maximum( 6.6, 8.8, 7.7 ) );
System.out.printf( "%s, %s 和 %s 中最大的数为 %s\n","pear",
"apple", "orange", maximum( "pear", "apple", "orange" ) );
}
}
编译以上代码,运行结果如下所示:
3, 4 和 5 中最大的数为 5
6.6, 8.8 和 7.7 中最大的数为 8.8
pear, apple 和 orange 中最大的数为 pear
泛型类的声明和非泛型类的声明类似,除了在类名后面添加了类型参数声明部分。
和泛型方法一样,泛型类的类型参数声明部分也包含一个或多个类型参数,参数间用逗号隔开。一个泛型参数,也被称为一个类型变量,是用于指定一个泛型类型名称的标识符。因为他们接受一个或多个参数,这些类被称为参数化的类或参数化的类型。
如下实例演示了我们如何定义一个泛型类:
public class Box<T> {
private T t;
public void add(T t) {
this.t = t;
}
public T get() {
return t;
}
public static void main(String[] args) {
Box<Integer> integerBox = new Box<Integer>();
Box<String> stringBox = new Box<String>();
integerBox.add(new Integer(10));
stringBox.add(new String("Java泛型"));
System.out.printf("整型值为 :%d\n\n", integerBox.get());
System.out.printf("字符串为 :%s\n", stringBox.get());
}
}
编译以上代码,运行结果如下所示:
整型值为 :10
字符串为 :Java泛型
泛型接口的定义和泛型类的定义一样,区别就在于一个是接口需要实现各个接口方法,一个是类,需要实现对应的抽象方法。
1、在定义一个接口的时候如果某些类型不能确定,那么就使用占位符标记,在具体使用的时候再指定泛型的类型。
2、接口的泛型常用的使用方式:
案例代码:
public class GenericTypeInterface {
public static void main(String[] args) {
Person p1 = new Person("tom", 16, 5000);
Person p2 = new Person("jack", 18, 4000);
System.out.println(p1.isBetter(p2));
}
}
/*
* 泛型接口
*/
interface CompareInterface<T> {
public boolean isBetter(T t);
}
//指定T为Person类型
class Person implements CompareInterface<Person> {
//属性
private String name;
private int age;
private int salary;
//构造方法
public Person() {
super();
}
public Person(String name, int age, int salary) {
super();
this.name = name;
this.age = age;
this.salary = salary;
}
//getter和setter
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public int getSalary() {
return salary;
}
public void setSalary(int salary) {
this.salary = salary;
}
// t为Person类型
@Override
public boolean isBetter(Person t) {
if (this.age < t.getAge() && this.salary > t.getSalary()) {
return true;
}
return false;
}
}
1、泛型通配符一般是使用 ? 代替具体的类型参数。例如 List> 在逻辑上是 List,List 等所有 List<具体类型实参> 的父类。
案例代码:
import java.util.*;
public class GenericTest {
public static void main(String[] args) {
List<String> name = new ArrayList<String>();
List<Integer> age = new ArrayList<Integer>();
List<Number> number = new ArrayList<Number>();
name.add("icon");
age.add(18);
number.add(314);
getData(name);
getData(age);
getData(number);
}
public static void getData(List<?> data) {
System.out.println("data :" + data.get(0));
}
}
输出结果为:
data :icon
data :18
data :314
解析: 因为 getData() 方法的参数是 List> 类型的,所以 name,age,number 都可以作为这个方法的实参,这就是通配符的作用。
2、泛型通配符上限通过形如List来定义,如此定义就是通配符泛型值接受Number及其下层子类类型。
案例代码:
import java.util.*;
public class GenericTest {
public static void main(String[] args) {
List<String> name = new ArrayList<String>();
List<Integer> age = new ArrayList<Integer>();
List<Number> number = new ArrayList<Number>();
name.add("icon");
age.add(18);
number.add(314);
//getUperNumber(name);//1
getUperNumber(age);//2
getUperNumber(number);//3
}
public static void getData(List<?> data) {
System.out.println("data :" + data.get(0));
}
public static void getUperNumber(List<? extends Number> data) {
System.out.println("data :" + data.get(0));
}
}
输出结果:
data :18
data :314
解析: 在 //1 处会出现错误,因为 getUperNumber() 方法中的参数已经限定了参数泛型上限为 Number,所以泛型为 String 是不在这个范围之内,所以会报错。
3、泛型通配符下限通过形如 List super Number> 来定义,表示类型只能接受 Number 及其上层父类类型,如 Object 类型的实例。