pytorch 笔记:VAE 变分自编码器

1 导入库

import torch
import torchvision
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.datasets import MNIST
import os
import numpy as np

2 VAE 模型

class VAE(nn.Module):
    def __init__(self, input_dim, hidden_dim, latent_dim):
        super(VAE, self).__init__()

        self.fc1 = nn.Linear(input_dim, hidden_dim)

        self.fc2 = nn.Linear(hidden_dim, latent_dim * 2)

        self.fc3 = nn.Linear(latent_dim, hidden_dim)

        self.fc4 = nn.Linear(hidden_dim, input_dim)
        
    def encode(self, x):

        h = F.relu(self.fc1(x))
        mu, logvar = torch.split(self.fc2(h), latent_dim, dim=1)
        return mu, logvar
        #两层全连接层作为encoder,返回均值μ和σ^2
    
    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        # 从log var中计算标准差

        
        eps = torch.randn_like(std)
        return mu + eps * std
        # 根据N(μ,σ^2)采样
    
    def decode(self, z):
       
        h = F.relu(self.fc3(z))
        return torch.sigmoid(self.fc4(h))
        #根据encoder采样得到的z,通过全连接层获得输出
    
    def forward(self, x):
        
        mu, logvar = self.encode(x)
        #encoder:获取均值μ和标准差σ^2


        z = self.reparameterize(mu, logvar)
        #encoder:采样z

        
        return self.decode(z), mu, logvar
        ## Decode the latent code to reconstruction

3 定义损失函数

\bg_white \left[E_{z \sim q_\phi(z \mid x)} \log p_\theta(x \mid z)\right]-D_{K L}\left(q_\phi(z \mid x), p(z)\right)

其中KL散度VAE 论文有推导:

pytorch 笔记:VAE 变分自编码器_第1张图片

# Define the loss function
def loss_function(recon_x, x, mu, logvar):

    BCE = F.binary_cross_entropy(recon_x, x, reduction='sum')
    #使用BCE计算重构误差

    # Calculate latent code regularization loss using Kullback-Leibler divergence
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    # Return total loss
    return BCE + KLD

4 生成模型

# Initialize parameters
input_dim = 784
hidden_dim = 128
latent_dim = 32

model = VAE(input_dim,hidden_dim,latent_dim)
print(model)
'''
VAE(
  (fc1): Linear(in_features=784, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=64, bias=True)
  (fc3): Linear(in_features=32, out_features=128, bias=True)
  (fc4): Linear(in_features=128, out_features=784, bias=True)
)
'''

5 数据部分

num_epochs = 50
batch_size = 128
learning_rate = 1e-3
 
img_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5])
])
 
dataset = MNIST('./data', transform=img_transform, download=False)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
 
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

6 training部分

for epoch in range(num_epochs):
    model.train()
    train_loss = 0
    for batch_idx, data in enumerate(dataloader):
        img, _ = data
        img = img.view(img.size(0), -1)
        optimizer.zero_grad()
        recon_batch, mu, logvar = model(img)
        loss = loss_function(recon_batch, img, mu, logvar)
        loss.backward()
        train_loss += loss.data.item()
        optimizer.step()

你可能感兴趣的:(pytorch学习,pytorch,python,深度学习)