本文来源Datawhale分享的深度学习资料
神经网络(Neural network)里面的节点,类似我们的神经元。
神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)在这个神经网络里面,我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。
需要通过手动设计各个神经元的链接方式
那什么叫做Deep呢?Deep = Many hidden layer。那到底可以有几层呢?这个就很难说了,以下是老师举出的一些比较深的神经网络的例子
这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多:
如下图所示,输入是 [ 1 − 2 − 1 1 ] \begin{bmatrix}&1&-2\\ &-1&1\end{bmatrix} [1−1−21],输出是 [ 0.98 0.12 ] \begin{bmatrix}&0.98\\ &0.12\end{bmatrix} [0.980.12]。
计算方法就是:sigmoid(权重w【黄色】 * 输入【蓝色】+ 偏移量b【绿色】)= 输出
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xYGmXbjz-1629641806931)(res/chapter13-9.png)]
其中sigmoid更一般的来说是激活函数(activation function),现在已经很少用sigmoid来当做激活函数。
如果有很多层呢?
a 1 = σ ( w 1 x + b 1 ) a 2 = σ ( w 1 a 1 + b 2 ) ⋅ ⋅ ⋅ y = σ ( w L a L − 1 + b L ) a^1 = \sigma (w^1x+b^1) \\ a^2 = \sigma (w^1a^1+b^2) \\ ··· \\ y = \sigma (w^La^{L-1}+b^L) a1=σ(w1x+b1)a2=σ(w1a1+b2)⋅⋅⋅y=σ(wLaL−1+bL)
所以整个神经网络运算就相当于一连串的矩阵运算。
从结构上看每一层的计算都是一样的,也就是用计算机进行并行矩阵运算。
这样写成矩阵运算的好处是,你可以使用GPU加速。
整个神经网络可以这样看:
把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。
举一个手写数字体识别的例子:
输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示
输出:10个维度,每个维度代表一个数字的置信度。
从输出结果来看,每一个维度对应输出一个数字,是数字2的概率为0.7的概率最大。说明这张图片是2的可能性就是最大的
在这个问题中,唯一需要的就是一个函数,输入是256维的向量,输出是10维的向量,我们所需要求的函数就是神经网络这个函数
接下来有几个问题:
对于模型的评估,我们一般采用损失函数来反应模型的好差,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对 y y y和 y ^ \hat{y} y^的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。
对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数 θ \theta θ,来最小化总体损失L
在神经网络中计算损失最好的方法就是反向传播,我们可以用很多框架来进行计算损失,比如说TensorFlow,theano,Pytorch等等
为什么要用深度学习,深层架构带来哪些好处?那是不是隐藏层越多越好?
从图中展示的结果看,毫无疑问,层次越深效果越好~~
参数多的model拟合数据很好是很正常的。下面有一个通用的理论:
对于任何一个连续的函数,都可以用足够多的隐藏层来表示。