solidity编写(fisco-bcos)中通用Table

1、编写抽象Table

pragma solidity ^0.5.0;
pragma experimental ABIEncoderV2;

import "./Table.sol";
import "./LibStrings.sol";
import "./LibStringUtil.sol";

contract AbstractBean {
    using LibStrings for *;

    // 定义添加数据的事件
    event AddEvent(int256 retCode, string primaryKey, string uniqueKey);

    // 定义表结构
    struct BeanInfo {
        // 表名称
        string tableName;
        // 主键
        string primaryKey;
        // 唯一键
        string uniqueKey;
        // 表字段(包括唯一建、不包括主键)
        string[] fields;
    }

    // 保存当前Bean的结构
    BeanInfo info;

    constructor (
        string memory tableName,
        string memory primaryKey,
        string memory uniqueKey,
        string memory fields
    ) public {
        // 创建表
        TableFactory tf = TableFactory(0x1001);
        // 拼接
        LibStrings.slice[] memory parts = new LibStrings.slice[](2);
        parts[0] = uniqueKey.toSlice();
        parts[1] = fields.toSlice();
        tf.createTable(tableName, primaryKey, ",".toSlice().join(parts));

        // 通过构造函数赋值当前BeanInfo
        info = BeanInfo({
            tableName : tableName,
            primaryKey : primaryKey,
            uniqueKey : uniqueKey,
            fields : new string[](0)
            });
        // 填充info中的fields
        setDBFields(info, uniqueKey, fields);
    }

    /*
        描述:根据主键查询所有记录
        参数:
            primaryKey:主键的值
        返回值:
            参数一:成功返回0,群组不存在返回-1
            参数二:第一个参数为0时有效,key->id,value->对象json 的数组
    */
    function select(string memory primaryKey) public view returns (int, string memory) {
        // 打开表
        Table table = openTable();
        // 查询
        Entries entries = table.select(primaryKey, table.newCondition());
        // 将查询结果解析为json字符串
        return LibStringUtil.getJsonString(info.fields, entries);
    }

    /*
        描述:根据主键查询指定ID的记录
        参数:
            primaryKey:主键的值
            uniqueKey:唯一键值
        返回值:
            参数一:成功返回0,群组不存在返回-1
            参数二:第一个参数为0时有效,key->id,value->对象json 的数组
    */
    function select(string memory primaryKey, string memory uniqueKey) public returns (int, string memory) {
        // 打开表
        Table table = openTable();
        // 构建查询条件
        Condition condition = table.newCondition();
        condition.EQ(info.uniqueKey, uniqueKey);
        // 查询
        Entries entries = table.select(primaryKey, condition);
        // 将查询结果解析为json字符串
        return LibStringUtil.getJsonString(info.fields, entries);
    }

    /*
        描述:新增记录
        参数:
            primaryKey:主键的值
            uniqueKey:唯一键值
            fields:其它字段的值
        返回值:
            成功返回0,记录已存在-1,其它失败返回-2(其它错误)
    */
    function insert(string memory primaryKey, string memory uniqueKey, string[] memory fields) public returns (int) {
        require(fields.length == info.fields.length - 1);

        int retCode;
        // 判断ID记录是否已存在
        int ret;
        string memory retValue;
        (ret, retValue) = select(primaryKey, uniqueKey);
        if (- 1 == ret) {
            // 打开表
            Table table = openTable();
            // 创建表记录
            Entry entry = table.newEntry();
            entry.set(info.primaryKey, primaryKey);
            entry.set(info.uniqueKey, uniqueKey);
            for (uint i = 1; i < info.fields.length; i++) {
                entry.set(info.fields[i], fields[i - 1]);
            }
            // 新增表记录
            if (1 == table.insert(primaryKey, entry)) {
                retCode = 0;
            } else {
                retCode = - 2;
            }
        } else {
            retCode = - 1;
        }

        // 记录新增结果
        emit AddEvent(retCode, primaryKey, uniqueKey);
        // 返回结果
        return retCode;
    }

    function openTable() private view returns (Table) {
        TableFactory tf = TableFactory(0x1001);
        return tf.openTable(info.tableName);
    }

    function setDBFields(BeanInfo storage info, string memory uniqueKey, string memory _fields) private {
        info.fields.push(uniqueKey);

        LibStrings.slice memory s = _fields.toSlice();
        LibStrings.slice memory delimiter = ",".toSlice();
        uint total = s.count(delimiter) + 1;
        for (uint i = 0; i < total; i++) {
            info.fields.push(s.split(delimiter).toString());
        }
    }

}

2、定义具体Table

pragma solidity ^0.5.0;
pragma experimental ABIEncoderV2;

import "./AbstractBean.sol";

contract Company is AbstractBean {

    constructor () AbstractBean(
        "company",
        "group_id",
        "id",
        "name,busi_license,legal_person,contacts,contacts_phone,contacts_address,other"
    ) public {
        // 空实现
    }

}

3、引入的工具类

/*
 * @title String & slice utility library for Solidity contracts.
 * @author Nick Johnson 
 *
 * @dev Functionality in this library is largely implemented using an
 *      abstraction called a 'slice'. A slice represents a part of a string -
 *      anything from the entire string to a single character, or even no
 *      characters at all (a 0-length slice). Since a slice only has to specify
 *      an offset and a length, copying and manipulating slices is a lot less
 *      expensive than copying and manipulating the strings they reference.
 *
 *      To further reduce gas costs, most functions on slice that need to return
 *      a slice modify the original one instead of allocating a new one; for
 *      instance, `s.split(".")` will return the text up to the first '.',
 *      modifying s to only contain the remainder of the string after the '.'.
 *      In situations where you do not want to modify the original slice, you
 *      can make a copy first with `.copy()`, for example:
 *      `s.copy().split(".")`. Try and avoid using this idiom in loops; since
 *      Solidity has no memory management, it will result in allocating many
 *      short-lived slices that are later discarded.
 *
 *      Functions that return two slices come in two versions: a non-allocating
 *      version that takes the second slice as an argument, modifying it in
 *      place, and an allocating version that allocates and returns the second
 *      slice; see `nextRune` for example.
 *
 *      Functions that have to copy string data will return strings rather than
 *      slices; these can be cast back to slices for further processing if
 *      required.
 *
 *      For convenience, some functions are provided with non-modifying
 *      variants that create a new slice and return both; for instance,
 *      `s.splitNew('.')` leaves s unmodified, and returns two values
 *      corresponding to the left and right parts of the string.
 */

pragma solidity ^0.5.0;

library LibStrings {
    struct slice {
        uint _len;
        uint _ptr;
    }

    function memcpy(uint dest, uint src, uint len) private pure {
        // Copy word-length chunks while possible
        for(; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        uint mask = 256 ** (32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /*
     * @dev Returns a slice containing the entire string.
     * @param self The string to make a slice from.
     * @return A newly allocated slice containing the entire string.
     */
    function toSlice(string memory self) internal pure returns (slice memory) {
        uint ptr;
        assembly {
            ptr := add(self, 0x20)
        }
        return slice(bytes(self).length, ptr);
    }

    /*
     * @dev Returns the length of a null-terminated bytes32 string.
     * @param self The value to find the length of.
     * @return The length of the string, from 0 to 32.
     * TODO 此处将self改为uint(self)
     */
    function len(bytes32 self) internal pure returns (uint) {
        uint ret;
        if (self == 0)
            return 0;
        if (uint(self) & 0xffffffffffffffffffffffffffffffff == 0) {
            ret += 16;
            self = bytes32(uint(self) / 0x100000000000000000000000000000000);
        }
        if (uint(self)  & 0xffffffffffffffff == 0) {
            ret += 8;
            self = bytes32(uint(self) / 0x10000000000000000);
        }
        if (uint(self)  & 0xffffffff == 0) {
            ret += 4;
            self = bytes32(uint(self) / 0x100000000);
        }
        if (uint(self)  & 0xffff == 0) {
            ret += 2;
            self = bytes32(uint(self) / 0x10000);
        }
        if (uint(self)  & 0xff == 0) {
            ret += 1;
        }
        return 32 - ret;
    }

    /*
     * @dev Returns a slice containing the entire bytes32, interpreted as a
     *      null-terminated utf-8 string.
     * @param self The bytes32 value to convert to a slice.
     * @return A new slice containing the value of the input argument up to the
     *         first null.
     */
    function toSliceB32(bytes32 self) internal pure returns (slice memory ret) {
        // Allocate space for `self` in memory, copy it there, and point ret at it
        assembly {
            let ptr := mload(0x40)
            mstore(0x40, add(ptr, 0x20))
            mstore(ptr, self)
            mstore(add(ret, 0x20), ptr)
        }
        ret._len = len(self);
    }

    /*
     * @dev Returns a new slice containing the same data as the current slice.
     * @param self The slice to copy.
     * @return A new slice containing the same data as `self`.
     */
    function copy(slice memory self) internal pure returns (slice memory) {
        return slice(self._len, self._ptr);
    }

    /*
     * @dev Copies a slice to a new string.
     * @param self The slice to copy.
     * @return A newly allocated string containing the slice's text.
     */
    function toString(slice memory self) internal pure returns (string memory) {
        string memory ret = new string(self._len);
        uint retptr;
        assembly { retptr := add(ret, 32) }

        memcpy(retptr, self._ptr, self._len);
        return ret;
    }

    /*
     * @dev Returns the length in runes of the slice. Note that this operation
     *      takes time proportional to the length of the slice; avoid using it
     *      in loops, and call `slice.empty()` if you only need to know whether
     *      the slice is empty or not.
     * @param self The slice to operate on.
     * @return The length of the slice in runes.
     */
    function len(slice memory self) internal pure returns (uint l) {
        // Starting at ptr-31 means the LSB will be the byte we care about
        uint ptr = self._ptr - 31;
        uint end = ptr + self._len;
        for (l = 0; ptr < end; l++) {
            uint8 b;
            assembly { b := and(mload(ptr), 0xFF) }
            if (b < 0x80) {
                ptr += 1;
            } else if(b < 0xE0) {
                ptr += 2;
            } else if(b < 0xF0) {
                ptr += 3;
            } else if(b < 0xF8) {
                ptr += 4;
            } else if(b < 0xFC) {
                ptr += 5;
            } else {
                ptr += 6;
            }
        }
    }

    /*
     * @dev Returns true if the slice is empty (has a length of 0).
     * @param self The slice to operate on.
     * @return True if the slice is empty, False otherwise.
     */
    function empty(slice memory self) internal pure returns (bool) {
        return self._len == 0;
    }

    /*
     * @dev Returns a positive number if `other` comes lexicographically after
     *      `self`, a negative number if it comes before, or zero if the
     *      contents of the two slices are equal. Comparison is done per-rune,
     *      on unicode codepoints.
     * @param self The first slice to compare.
     * @param other The second slice to compare.
     * @return The result of the comparison.
     */
    function compare(slice memory self, slice memory other) internal pure returns (int) {
        uint shortest = self._len;
        if (other._len < self._len)
            shortest = other._len;

        uint selfptr = self._ptr;
        uint otherptr = other._ptr;
        for (uint idx = 0; idx < shortest; idx += 32) {
            uint a;
            uint b;
            assembly {
                a := mload(selfptr)
                b := mload(otherptr)
            }
            if (a != b) {
                // Mask out irrelevant bytes and check again
                uint256 mask = uint256(-1); // 0xffff...
                if(shortest < 32) {
                  mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                }
                uint256 diff = (a & mask) - (b & mask);
                if (diff != 0)
                    return int(diff);
            }
            selfptr += 32;
            otherptr += 32;
        }
        return int(self._len) - int(other._len);
    }

    /*
     * @dev Returns true if the two slices contain the same text.
     * @param self The first slice to compare.
     * @param self The second slice to compare.
     * @return True if the slices are equal, false otherwise.
     */
    function equals(slice memory self, slice memory other) internal pure returns (bool) {
        return compare(self, other) == 0;
    }

    /*
     * @dev Extracts the first rune in the slice into `rune`, advancing the
     *      slice to point to the next rune and returning `self`.
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `rune`.
     */
    function nextRune(slice memory self, slice memory rune) internal pure returns (slice memory) {
        rune._ptr = self._ptr;

        if (self._len == 0) {
            rune._len = 0;
            return rune;
        }

        uint l;
        uint b;
        // Load the first byte of the rune into the LSBs of b
        assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
        if (b < 0x80) {
            l = 1;
        } else if(b < 0xE0) {
            l = 2;
        } else if(b < 0xF0) {
            l = 3;
        } else {
            l = 4;
        }

        // Check for truncated codepoints
        if (l > self._len) {
            rune._len = self._len;
            self._ptr += self._len;
            self._len = 0;
            return rune;
        }

        self._ptr += l;
        self._len -= l;
        rune._len = l;
        return rune;
    }

    /*
     * @dev Returns the first rune in the slice, advancing the slice to point
     *      to the next rune.
     * @param self The slice to operate on.
     * @return A slice containing only the first rune from `self`.
     */
    function nextRune(slice memory self) internal pure returns (slice memory ret) {
        nextRune(self, ret);
    }

    /*
     * @dev Returns the number of the first codepoint in the slice.
     * @param self The slice to operate on.
     * @return The number of the first codepoint in the slice.
     */
    function ord(slice memory self) internal pure returns (uint ret) {
        if (self._len == 0) {
            return 0;
        }

        uint word;
        uint length;
        uint divisor = 2 ** 248;

        // Load the rune into the MSBs of b
        assembly { word:= mload(mload(add(self, 32))) }
        uint b = word / divisor;
        if (b < 0x80) {
            ret = b;
            length = 1;
        } else if(b < 0xE0) {
            ret = b & 0x1F;
            length = 2;
        } else if(b < 0xF0) {
            ret = b & 0x0F;
            length = 3;
        } else {
            ret = b & 0x07;
            length = 4;
        }

        // Check for truncated codepoints
        if (length > self._len) {
            return 0;
        }

        for (uint i = 1; i < length; i++) {
            divisor = divisor / 256;
            b = (word / divisor) & 0xFF;
            if (b & 0xC0 != 0x80) {
                // Invalid UTF-8 sequence
                return 0;
            }
            ret = (ret * 64) | (b & 0x3F);
        }

        return ret;
    }

    /*
     * @dev Returns the keccak-256 hash of the slice.
     * @param self The slice to hash.
     * @return The hash of the slice.
     */
    function keccak(slice memory self) internal pure returns (bytes32 ret) {
        assembly {
            ret := keccak256(mload(add(self, 32)), mload(self))
        }
    }

    /*
     * @dev Returns true if `self` starts with `needle`.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function startsWith(slice memory self, slice memory needle) internal pure returns (bool) {
        if (self._len < needle._len) {
            return false;
        }

        if (self._ptr == needle._ptr) {
            return true;
        }

        bool equal;
        assembly {
            let length := mload(needle)
            let selfptr := mload(add(self, 0x20))
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
        }
        return equal;
    }

    /*
     * @dev If `self` starts with `needle`, `needle` is removed from the
     *      beginning of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        bool equal = true;
        if (self._ptr != needle._ptr) {
            assembly {
                let length := mload(needle)
                let selfptr := mload(add(self, 0x20))
                let needleptr := mload(add(needle, 0x20))
                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
            self._ptr += needle._len;
        }

        return self;
    }

    /*
     * @dev Returns true if the slice ends with `needle`.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function endsWith(slice memory self, slice memory needle) internal pure returns (bool) {
        if (self._len < needle._len) {
            return false;
        }

        uint selfptr = self._ptr + self._len - needle._len;

        if (selfptr == needle._ptr) {
            return true;
        }

        bool equal;
        assembly {
            let length := mload(needle)
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
        }

        return equal;
    }

    /*
     * @dev If `self` ends with `needle`, `needle` is removed from the
     *      end of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function until(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        uint selfptr = self._ptr + self._len - needle._len;
        bool equal = true;
        if (selfptr != needle._ptr) {
            assembly {
                let length := mload(needle)
                let needleptr := mload(add(needle, 0x20))
                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
        }

        return self;
    }

    // Returns the memory address of the first byte of the first occurrence of
    // `needle` in `self`, or the first byte after `self` if not found.
    function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }

    // Returns the memory address of the first byte after the last occurrence of
    // `needle` in `self`, or the address of `self` if not found.
    function rfindPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                ptr = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr <= selfptr)
                        return selfptr;
                    ptr--;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr + needlelen;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }
                ptr = selfptr + (selflen - needlelen);
                while (ptr >= selfptr) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr + needlelen;
                    ptr -= 1;
                }
            }
        }
        return selfptr;
    }

    /*
     * @dev Modifies `self` to contain everything from the first occurrence of
     *      `needle` to the end of the slice. `self` is set to the empty slice
     *      if `needle` is not found.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function find(slice memory self, slice memory needle) internal pure returns (slice memory) {
        uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
        self._len -= ptr - self._ptr;
        self._ptr = ptr;
        return self;
    }

    /*
     * @dev Modifies `self` to contain the part of the string from the start of
     *      `self` to the end of the first occurrence of `needle`. If `needle`
     *      is not found, `self` is set to the empty slice.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function rfind(slice memory self, slice memory needle) internal pure returns (slice memory) {
        uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
        self._len = ptr - self._ptr;
        return self;
    }

    /*
     * @dev Splits the slice, setting `self` to everything after the first
     *      occurrence of `needle`, and `token` to everything before it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and `token` is set to the entirety of `self`.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function split(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
        uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
        token._ptr = self._ptr;
        token._len = ptr - self._ptr;
        if (ptr == self._ptr + self._len) {
            // Not found
            self._len = 0;
        } else {
            self._len -= token._len + needle._len;
            self._ptr = ptr + needle._len;
        }
        return token;
    }

    /*
     * @dev Splits the slice, setting `self` to everything after the first
     *      occurrence of `needle`, and returning everything before it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and the entirety of `self` is returned.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @return The part of `self` up to the first occurrence of `delim`.
     */
    function split(slice memory self, slice memory needle) internal pure returns (slice memory token) {
        split(self, needle, token);
    }

    /*
     * @dev Splits the slice, setting `self` to everything before the last
     *      occurrence of `needle`, and `token` to everything after it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and `token` is set to the entirety of `self`.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function rsplit(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
        uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
        token._ptr = ptr;
        token._len = self._len - (ptr - self._ptr);
        if (ptr == self._ptr) {
            // Not found
            self._len = 0;
        } else {
            self._len -= token._len + needle._len;
        }
        return token;
    }

    /*
     * @dev Splits the slice, setting `self` to everything before the last
     *      occurrence of `needle`, and returning everything after it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and the entirety of `self` is returned.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @return The part of `self` after the last occurrence of `delim`.
     */
    function rsplit(slice memory self, slice memory needle) internal pure returns (slice memory token) {
        rsplit(self, needle, token);
    }

    /*
     * @dev Counts the number of nonoverlapping occurrences of `needle` in `self`.
     * @param self The slice to search.
     * @param needle The text to search for in `self`.
     * @return The number of occurrences of `needle` found in `self`.
     */
    function count(slice memory self, slice memory needle) internal pure returns (uint cnt) {
        uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr) + needle._len;
        while (ptr <= self._ptr + self._len) {
            cnt++;
            ptr = findPtr(self._len - (ptr - self._ptr), ptr, needle._len, needle._ptr) + needle._len;
        }
    }

    /*
     * @dev Returns True if `self` contains `needle`.
     * @param self The slice to search.
     * @param needle The text to search for in `self`.
     * @return True if `needle` is found in `self`, false otherwise.
     */
    function contains(slice memory self, slice memory needle) internal pure returns (bool) {
        return rfindPtr(self._len, self._ptr, needle._len, needle._ptr) != self._ptr;
    }

    /*
     * @dev Returns a newly allocated string containing the concatenation of
     *      `self` and `other`.
     * @param self The first slice to concatenate.
     * @param other The second slice to concatenate.
     * @return The concatenation of the two strings.
     */
    function concat(slice memory self, slice memory other) internal pure returns (string memory) {
        string memory ret = new string(self._len + other._len);
        uint retptr;
        assembly { retptr := add(ret, 32) }
        memcpy(retptr, self._ptr, self._len);
        memcpy(retptr + self._len, other._ptr, other._len);
        return ret;
    }

    /*
     * @dev Joins an array of slices, using `self` as a delimiter, returning a
     *      newly allocated string.
     * @param self The delimiter to use.
     * @param parts A list of slices to join.
     * @return A newly allocated string containing all the slices in `parts`,
     *         joined with `self`.
     */
    function join(slice memory self, slice[] memory parts) internal pure returns (string memory) {
        if (parts.length == 0)
            return "";

        uint length = self._len * (parts.length - 1);
        for(uint i = 0; i < parts.length; i++)
            length += parts[i]._len;

        string memory ret = new string(length);
        uint retptr;
        assembly { retptr := add(ret, 32) }

        for(uint i = 0; i < parts.length; i++) {
            memcpy(retptr, parts[i]._ptr, parts[i]._len);
            retptr += parts[i]._len;
            if (i < parts.length - 1) {
                memcpy(retptr, self._ptr, self._len);
                retptr += self._len;
            }
        }

        return ret;
    }
}

pragma solidity ^0.5.0;
pragma experimental ABIEncoderV2;

import "./Table.sol";

/**
    @title 将Bean格式化为json
*/
library LibStringUtil {

    function getEntry(string[] memory fields, Entry entry) internal view returns (string[] memory) {
        string[] memory values = new string[](fields.length);
        for (uint i = 0; i < fields.length; i++) {
            values[i] = entry.getString(fields[i]);
        }
        return values;
    }

    function getJsonString(string[] memory fields, Entries entries) internal view returns (int, string memory) {
        string memory detail;
        if (0 == entries.size()) {
            return (- 1, detail);
        }
        else {
            //            [{"index":"",{"key1":"","key2":""}}]

            detail = "[";

            // 获取Bean的值
            for (uint i = 0; i < uint(entries.size()); i++) {
                string[] memory values = getEntry(fields, entries.get(int(i)));
                for (uint j = 0; j < values.length; j++) {
                    if (j == 0) {
                        detail = strConcat4(detail, "{\"index\":\"", values[0], "\",{");
                    }

                    detail = strConcat6(detail, "\"", fields[j], "\":\"", values[j], "\"");

                    if (j == values.length - 1) {
                        detail = strConcat2(detail, "}}");
                    } else {
                        detail = strConcat2(detail, ",");
                    }
                }

                if (i != uint(entries.size()) - 1) {
                    detail = strConcat2(detail, ",");
                }
            }

            detail = strConcat2(detail, "]");

            return (0, detail);
        }
    }

    function strConcat6(
        string memory str1,
        string memory str2,
        string memory str3,
        string memory str4,
        string memory str5,
        string memory str6
    ) internal pure returns (string memory) {
        string[] memory strings = new string[](6);
        strings[0] = str1;
        strings[1] = str2;
        strings[2] = str3;
        strings[3] = str4;
        strings[4] = str5;
        strings[5] = str6;
        return strConcat(strings);
    }

    function strConcat5(
        string memory str1,
        string memory str2,
        string memory str3,
        string memory str4,
        string memory str5
    ) internal pure returns (string memory) {
        string[] memory strings = new string[](5);
        strings[0] = str1;
        strings[1] = str2;
        strings[2] = str3;
        strings[3] = str4;
        strings[4] = str5;
        return strConcat(strings);
    }

    function strConcat4(
        string memory str1,
        string memory str2,
        string memory str3,
        string memory str4
    ) internal pure returns (string memory) {
        string[] memory strings = new string[](4);
        strings[0] = str1;
        strings[1] = str2;
        strings[2] = str3;
        strings[3] = str4;
        return strConcat(strings);
    }

    function strConcat3(
        string memory str1,
        string memory str2,
        string memory str3
    ) internal pure returns (string memory) {
        string[] memory strings = new string[](3);
        strings[0] = str1;
        strings[1] = str2;
        strings[2] = str3;
        return strConcat(strings);
    }

    function strConcat2(string memory str1, string memory str2) internal pure returns (string memory) {
        string[] memory strings = new string[](2);
        strings[0] = str1;
        strings[1] = str2;
        return strConcat(strings);
    }

    function strConcat(string[] memory strings) internal pure returns (string memory) {
        // 计算字节长度
        uint bLength = 0;
        for (uint i = 0; i < strings.length; i++) {
            bLength += bytes(strings[i]).length;
        }

        // 实例化字符串
        string memory result = new string(bLength);
        bytes memory bResult = bytes(result);

        // 填充字符串
        uint currLength = 0;
        for (uint i = 0; i < strings.length; i++) {
            // 将当前字符串转换为字节数组
            bytes memory bs = bytes(strings[i]);
            for (uint j = 0; j < bs.length; j++) {
                bResult[currLength] = bs[j];
                currLength++;
            }
        }

        return string(bResult);
    }

}

你可能感兴趣的:(solidity编写(fisco-bcos)中通用Table)