统计数据的python实践

python练习代码:

```

# -*- coding: utf-8 -*-

import pandas as pd

from pandas import DataFrame as df

import numpy as np

from functools import reduce

import sys

from scipy import stats

import matplotlib.pyplot as plt

def load_data_from_csv(csv_file_path):

    data = pd.read_csv(csv_file_path)

    return data

# 算术平均数

def cal_arithmatic_mean(series):

    return series.mean()

# 几何平均数

def get_geometric_mean(series):

    return pow(reduce(lambda x,y : x*y, series), 1.0 / len(series))

# 加权平均数

def get_weighted_average(series, weights):

    return np.average(series, weights = weights)

# 中位数

def get_median(series):

    return np.median(series)

# 分位数

def get_percentile(series, percentiles):

    return np.percentile(series, percentiles)

# 众数

def get_mode(series):

    count_dict = dict()

    for num in series:

        if not num in count_dict.keys():

            count_dict[num] = 0

        count_dict[num] += 1

    sorted_nums = sorted(count_dict.items(), key = lambda num:num[1], reverse = True)

    return sorted_nums[0][0]

# 极差

def get_range(series):

    return max(series) - min(series)

# 中程数

def get_midrange(series):

    return np.mean([max(series), min(series)])

# 方差

def get_variance(series, ddof): # ddof - 0: 总体方差, 1: 样本方差

    return np.var(series, ddof = ddof)

# 标准差

def get_std_deviation(series, ddof): # ddof - 0: 总体标准差, 1: 样本标准差

    return np.std(series, ddof = ddof)

# 平均差

def get_avg_deviation(series):

    mean = np.mean(series)

    sum = 0.0

    for num in series:

        sum += abs(num - mean)

    return sum / len(series)

# 四分位差

def get_4percentile_deviation(series):

    percentiles4 = [25, 75]

    percentiles4_nums = get_percentile(series, percentiles4)

    return percentiles4_nums[1] - percentiles4_nums[0]

# 异众比率

def get_variation_ratio(series):

    count_dict = dict()

    for num in series:

        if not num in count_dict.keys():

            count_dict[num] = 0

        count_dict[num] += 1

    sorted_nums = sorted(count_dict.items(), key = lambda num:num[1], reverse = True)

    return (len(series) - sorted_nums[0][1]) * 1.0 / len(series)

# 离散系数

def get_variation_coefficient(series):

    std_variation_sample = get_std_deviation(series, 1)

    return std_variation_sample / np.mean(series)

# 偏态系数

def get_skew(series):

    '''

    #plt.hist(series,100,normed=True,facecolor='g',alpha=0.9)

    #plt.show()

    mean = np.mean(series)

    return np.mean((series - mean) ** 3)

    '''

    return series.skew()

# 峰度系数

def get_kurt(series):

    '''

    mean = np.mean(series)

    var = np.var(series, ddof = 0)

    return np.mean((series - mean) ** 4) / pow(var, 2)

    '''

    return series.kurt()

csv_file_path = sys.argv[1]

data = load_data_from_csv(csv_file_path)

series = data['num6']

#print(series)

weights = np.random.randint(10, size = len(series))

#print(weights)

print('******数据的集中趋势******')

arithmatic_mean = cal_arithmatic_mean(series)

print('算术平均数: %f' % arithmatic_mean)

geometric_mean = get_geometric_mean(series)

print('几何平均数: %f' % geometric_mean)

weighted_average = get_weighted_average(series, weights)

print('加权平均数: %f' % weighted_average)

median = get_median(series)

print('中位数: %f' % median)

percentiles = [25, 50, 75]

percentiles_nums = get_percentile(series, percentiles)

print('四分位数: %s' % percentiles_nums)

mode = get_mode(series)

print('众数: %f' % mode)

range = get_range(series)

print('极差: %f' % range)

midrange = get_midrange(series)

print('中程数: %f' % midrange)

print('******数据的离中趋势******')

variance_total = get_variance(series, 0)

variance_sample = get_variance(series, 1)

print('总体方差: %f,样本方差: %f' % (variance_total, variance_sample))

std_deviation_total = get_std_deviation(series, 0)

std_deviation_sample = get_std_deviation(series, 1)

print('总体标准差: %f, 样本标准差: %f' % (std_deviation_total, std_deviation_sample))

avg_deviation = get_avg_deviation(series)

print('标准差: %f' % avg_deviation)

percentile4_deviation = get_4percentile_deviation(series)

print('四分位差: %f' % percentile4_deviation)

variation_ratio = get_variation_ratio(series)

print('异众比率: %f' % variation_ratio)

print('******数据的相对离散程度******')

variation_coefficient = get_variation_coefficient(series)

print('离散系数: %f' % variation_coefficient)

print('******数据的分布形状******')

skew = get_skew(series)

print('偏态系数: %f' % skew)

kurt = get_kurt(series)

print('峰度系数: %f' % kurt)

```

你可能感兴趣的:(统计数据的python实践)