- YOLOv8重磅升级:引入DenseOne密集网络革新主干设计,重塑YOLO目标检测性能新高度
程序员杨弋
YOLO目标检测人工智能
随着深度学习技术的不断进步,目标检测作为计算机视觉领域的重要任务之一,其性能和应用范围也在不断扩大。作为目标检测领域的佼佼者,YOLO(YouOnlyLookOnce)系列算法以其出色的性能和实时性受到了广泛关注。而最近提出的YOLOv8更是在前代版本的基础上进行了多项优化,进一步提升了检测精度和速度。然而,尽管YOLOv8已经取得了显著的进步,但在处理复杂场景和遮挡问题时,仍然存在一定的挑战。为
- python图片分析中央气象台降水量预报_全国天气降水量预报图数据接口
周美灵是我大姐头
全国天气降水量预报图接口免费在线测试此接口(需要登录)接口每两小时更新一次,一天调取1-2次即可,返回3张图:24、48、72小时,请勿频繁调用!。请求方式及url:请求方式:GET接口地址:https://tianqiapi.com/api请求示例https://tianqiapi.com/api?version=v8&appid=&appsecret=请求参数说明:参数名必选类型说明备注(示例
- 深度学习驱动的极端天气预测:时空数据异常检测与应用全解析(基于Python + TensorFlow)
AI_DL_CODE
深度学习pythontensorflow人工智能天气预测
摘要:时空数据异常检测在气象领域识别偏离正常模式的数据点,对极端天气预测至关重要。深度学习,尤其是LSTM网络,因其强大的特征学习能力在该领域显示出巨大潜力。通过整合多源气象数据,深度学习模型能够自动挖掘复杂模式和非线性关系,提高预测准确性。然而,挑战依然存在,包括数据质量问题、模型可解释性不足以及极端天气的内在复杂性和不确定性。未来,通过模型架构创新、训练算法优化以及探索深度学习在气候预测、气象
- C++学习路线:从基础到精通
byte轻骑兵
编程语言精要#C++深度探索与实战专栏开发语言c++
目录一、C++基础1.1.学习目标1.2.学习内容1.3.C++语言的特点二、面向对象编程(OOP)2.1.学习目标2.2.学习内容三、C++核心编程3.1.学习目标3.2.学习内容四、高级主题4.1.学习目标4.2.学习内容五、软件开发实践5.1.学习目标5.2.学习内容5.2.1.学习使用构建系统(如CMake)来组织和管理项目5.2.2.学习版本控制(如Git)来管理代码版本5.2.3.学习
- springboot毕设 基于java的在线学习交流平台 程序+论文
明思计算机毕设
springboot课程设计后端
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景随着互联网技术的飞速发展和全球教育资源的日益丰富,在线学习已成为人们获取知识、提升技能的重要途径。特别是在近年来,受各种因素影响,线上教育需求激增,促使在线学习交流平台不断涌现。这些平台旨在打破传统教育的时空限制,为学习者提供更加灵活、个性化的学习体验。然而,当前市场上的在线学
- 快速排序介绍
max500600
算法算法数据结构排序算法
快速排序(QuickSort)是种高效的基于比较的排序算法,它采用了分治策略(DivideandConquer)。其基本思想是通过选择一个基准值(pivot),将数组分为两部分,小于基准值的元素放在左边,大于基准值的元素放在右边,然后递归地对这两部分进行排序,最终使整个数组有序。1.算法步骤选择基准值:从数组中选择一个元素作为基准值。通常可以选择数组的第一个元素、最后元素或中间元素等,这里以选择第
- C语言进阶——通讯录模拟实现
_麦麦_
C语言进阶c语言算法开发语言
个人主页:_麦麦_今日名言:只有走在路上,才能摆脱局限,摆脱执着,让所有的选择,探寻,猜测,想象都生机勃勃。——余秋雨《文化苦旅》目录一、前言二、正文1.大体框架2.界面显示3.创建通讯录4.初始化通讯录5.增加联系人6.显示联系人7.删除联系人8.查找联系人9.修改联系人10.排序联系人三、结语一、前言在上一章的结构体的学习中,相信小伙伴们或多或少都有所收获,但是有的小伙伴可能会问,结构体到底能
- 基于深度学习的人脸表情识别系统:YOLOv5 + YOLOv8 + YOLOv10 + UI界面 + 数据集
2025年数学建模美赛
深度学习YOLOui分类人工智能
引言随着人工智能的飞速发展,深度学习技术已广泛应用于各个领域,尤其是在计算机视觉领域。人脸识别和表情识别是其中的一个重要应用,能够在多种场景下提供重要的信息,例如安全监控、情感分析、智能客服、健康监测等。在人脸表情识别任务中,准确识别人脸的情感状态(如高兴、愤怒、悲伤等)是一个极具挑战性的任务。随着YOLO系列算法的不断进步,YOLOv5、YOLOv8和YOLOv10的推出大大提高了目标检测的精度
- 基于YOLOv8深度学习的人脸年龄检测识别系统
2025年数学建模美赛
YOLO深度学习人工智能ui数据挖掘分类
引言随着人工智能和计算机视觉的飞速发展,人脸分析技术在年龄检测领域取得了显著进展。人脸年龄检测系统在安全监控、广告推荐、健康监测等领域有广泛应用。本文将基于YOLOv8目标检测模型和UI界面,开发一个完整的人脸年龄检测识别系统。我们将详细介绍项目的技术实现、数据集构建、模型训练以及UI设计,并附上完整代码。目录引言系统架构设计数据准备公开人脸年龄数据集数据标注格式数据目录结构模型训练YOLOv8环
- 基于深度学习的人脸表情识别系统(YOLOv10+UI界面+数据集)
2025年数学建模美赛
深度学习YOLOui计算机视觉人工智能目标跟踪
在本篇博客中,我们将详细介绍如何构建一个基于深度学习的人脸表情识别系统。该系统主要由三部分组成:YOLOv10(深度学习模型)进行表情识别、UI界面展示识别结果以及数据集的准备和训练过程。我们将从系统架构、数据准备、模型训练、UI设计等多个方面进行全面讲解,最终实现一个能够实时识别并展示人脸表情的系统。目录1.系统架构2.数据集准备2.1FER2013数据集2.2数据预处理3.YOLOv10模型概
- 基于深度学习的人脸表情识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能代码
1.引言近年来,人脸表情识别在情感计算、智能人机交互、心理学研究等领域有着广泛的应用。深度学习的快速发展,使得高效、准确的人脸表情识别成为可能。通过利用卷积神经网络(CNN)和目标检测技术,可以实现实时、精准的人脸表情识别。本文将基于YOLOv8构建一个完整的人脸表情识别系统。系统集成了数据集准备、YOLOv8模型训练、实时推理以及基于PyQt5的图形用户界面(UI)。通过本文,你将学习如何实现一
- 分频器code
一条九漏鱼
verilog开发实战指南fpga开发
理论学习数字电路中时钟占有非常重要的地位。时间的计算都依靠时钟信号作为基本单元。一般而言,一块板子只有一个晶振,即只有一种频率的时钟,但是数字系统中,经常需要对基准时钟进行不同倍数的分频,进而得到各模块所需的频率。若想得到比系统时钟更慢的时钟,可以将基准时钟进行分频。若想得到比系统时钟更快的时钟,可以将基准时钟进行倍频。不管是分频还是倍频,都通过PLL实现或者用verilog描述实现。我们用ver
- 我的秋招总结
今天不coding
秋招秋招总结大厂秋招建议秋招准备
我的秋招总结个人背景双非本,985硕,科班准备情况以求职为目的学习Java的时间大概一年。八股,一开始主要是看B站黑马的八股文课程,背JavaGuide和小林coding还有面试鸭。算法,250+,刷了3遍左右项目,API开放平台+OJ在线判题系统+实习项目(检索+大模型)实习,华为线上算法实习4个月,小厂Java实习5个月,滴滴后端实习9个月offer京东零售-供应链sp美团到家-履约sp快手-
- 爬虫scrapy框架进阶-CrawlSpider, Rule
吃猫的鱼python
爬虫python数据挖掘scrapy
文章适合于所有的相关人士进行学习各位看官看完了之后不要立刻转身呀期待三连关注小小博主加收藏⚓️小小博主回关快会给你意想不到的惊喜呀⚓️文章目录scrapy中加入CrawlSpider️创建项目️提取器和规则RULEscrapy爬虫实战️分析网站️代码部分1.settings部分2.starts部分3.items部分4.重要的lyw_spider部分5.pipelines部分scrapy中加入Cra
- 【机器学习】从零开始,用线性代数解锁智能时代的钥匙!
eclipsercp
工具毕业设计python机器学习线性代数人工智能
【机器学习】从零开始,用线性代数解锁智能时代的钥匙!文章目录【机器学习】从零开始,用线性代数解锁智能时代的钥匙!引言在这个数据驱动的时代,机器学习已经成为解锁智能科技的关键。但你是否曾被复杂的数学公式和算法搞得晕头转向?别担心,这篇文章将带你从零开始,用最直观的方式掌握线性代数——机器学习的核心武器!线性代数:机器学习的基石向量:数据的基本单元Python代码示例:向量操作矩阵:多维数据的集合Py
- 《我的编程之旅:起点与展望》
dmz521521_aa
c++python
大家好,我是等天黑,一名对编程充满热情的初学者。我一直对科技领域有着浓厚的兴趣,喜欢探索各种新奇的软件和应用,也总是好奇它们背后是如何运作的。这种好奇心驱使我踏上了编程学习之路,希望能够深入了解这个充满魅力与挑战的世界,并且有朝一日能够用代码创造出有价值的东西。一、编程目标短期目标在接下来的三个月内,熟练掌握至少一种编程语言的基础语法,能够独立完成一些简单的编程项目。通过这些实践项目,积累代码编写
- Python学习(十七)——re类与正则表达式
阿卡蒂奥
Pythonpython正则表达式
re.match()匹配尝试在字符串的起始处应用该模式,返回一个匹配对象,如果没有找到匹配项,则返回一个对象。re.match().start()返回子串匹配组的开始索引printre.match('Hello','Hello,World!').start()输出:0re.match().end()返回子串匹配组的结束索引printre.match('Hello','Hello,World!').
- 《CPython Internals》阅读笔记:p1-p19
python
《CPythonInternals》学习第1天,p1-p19总结,总计19页。一、技术总结无。二、英语总结(生词:2)1.humblevshumbled(1)humble:humus(“earth”)adj.字面意思是“ontheground”,后面引申为“lowlyinkind,state,condition(卑微)”,"notproudthatyouareimportant(谦卑)"。(2)h
- 《解锁数据新动能:数据标注工具与AI模型训练平台的无缝对接热潮》
人工智能深度学习
在当今人工智能飞速发展的时代,数据已然成为驱动其进步的核心燃料。而数据标注工具与人工智能模型训练平台的集成,实现数据的无缝流转,正逐渐成为行业内的关键热点,犹如为人工智能的发展装上了强劲的双引擎。为何集成如此关键数据标注是为数据赋予标签,使其能被人工智能模型理解和学习的过程。训练平台则是利用这些标注好的数据来构建和优化模型。两者若相互独立运作,数据在不同系统间的传输会面临格式不兼容、接口不匹配等难
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 《数据质量:人工智能模型的成败关键》
人工智能深度学习
在当今人工智能飞速发展的时代,数据质量对人工智能模型的影响至关重要,它直接关系到模型的性能、准确性和可靠性。以下是对这一问题的详细探讨。影响模型的准确性数据准确性的作用:准确的数据是模型准确输出的基础。如果数据中存在错误、偏差或噪声,模型就会学习到这些错误信息,从而导致预测结果不准确。例如在医疗诊断模型中,若患者的症状数据记录错误,模型可能会给出错误的诊断建议。数据完整性的影响:不完整的数据会使模
- python常用库学习四——subprocess
木头人123。
python库学习python
目录前言1、subprocess.run()(1)函数参数列表(2)函数的参数含义(3)使用示例2、subprocess.Popen(1)函数参数列表(2)函数参数含义(3)使用示例3、常见的subprocess.Popen类方法(1)Popen.poll()(2)Popen.communicate(input=None,timeout=None)(3)Popen.send_signal(sign
- 面对 this 指向丢失,尤雨溪在 Vuex 源码中是怎么处理的
写于2021-08-02,同步于segmentfault。1.前言大家好,我是若川,欢迎follow我的github。我倾力持续组织了3年多每周大家一起学习200行左右的源码共读活动,感兴趣的可以点此扫码加我微信ruochuan02参与。另外,想学源码,极力推荐关注我写的专栏《学习源码整体架构系列》,目前是掘金关注人数(5.7k+人)第一的专栏,写有20余篇源码文章。好久以前我有写过《面试官问系列
- 每次启动项目的服务,电脑竟然乖乖的帮我打开了浏览器,100行源码揭秘!
写于2021-11-04,现在同步到segmentfalut。1.前言大家好,我是若川,欢迎follow我的github。我倾力持续组织了3年多每周大家一起学习200行左右的源码共读活动,感兴趣的可以点此扫码加我微信ruochuan02参与。另外,想学源码,极力推荐关注我写的专栏《学习源码整体架构系列》,目前是掘金关注人数(5.7k+人)第一的专栏,写有20余篇源码文章。本文仓库open-anal
- 如何设计一款分布式数据库
借雨醉东风
热点追踪分布式
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- 【机器学习】聚类【Ⅰ】基础知识与距离度量
不牌不改
【机器学习】聚类机器学习算法
主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。有任何的书写错误、排版错误、概念错误等,希望大家包含指正。由于字数限制,分成五篇博客。【机器学习】聚类【Ⅰ】基础知识与距离度量【机器学习】聚类【Ⅱ】原型聚类经典算法【机器学习】聚类【Ⅲ】高斯混合模型讲解【机器学习】聚类【Ⅳ】高斯混合模型数学推导【机器学习】聚类【Ⅴ】密度聚类与层次聚类聚类1聚类任务在“无
- 用pygame制作的一个简单控制方块移动
come-昂-
pythonpygame
今天学习了一下pygame的简单用法,想用pygame制作一个小游戏,但受制于能力尚不完善,只能从基础做起。编写了一个简单的“小游戏”,就叫它小游戏吧,只有一个操作,可以实现方块的移动importsys,pygamepygame.init()#窗口初始化size=width,height=600,600screen=pygame.display.set_mode(size)#设置窗口大小WHITE
- 第83期 | GPTSecurity周报
aigcgpts
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- Taro 源码揭秘:4. 每次 npm run dev:weapp 开发小程序,build 编译打包是如何实现的?
1.前言大家好,我是若川,欢迎关注我的公众号:若川视野。我倾力持续组织了3年多每周大家一起学习200行左右的源码共读活动,感兴趣的可以点此扫码加我微信ruochuan02参与。另外,想学源码,极力推荐关注我写的专栏《学习源码整体架构系列》,目前是掘金关注人数(6k+人)第一的专栏,写有几十篇源码文章。截至目前(2024-08-16),taro4.0正式版已经发布,目前最新是4.0.4,官方4.0正
- AI大模型应用架构(ALLMA)白皮书解读
百度_开发者中心
人工智能大模型数据库自然语言处理
随着人工智能技术的不断发展,AI大模型成为推动生产、生活方式变革,助推产业智能化转型升级,驱动数字经济高质量发展等社会经济发展方面的新引擎。为了全面展示AI大模型的发展全貌,为各界提供新思路,本文将对AI大模型应用架构(ALLMA)白皮书进行解读。一、AI大模型应用架构(ALLMA)的内涵AI大模型应用架构(ALLMA)是一种基于深度学习的人工智能应用架构,旨在通过大规模无标注数据预训练、指令微调
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不