Hive Distinct的实现原理

Distinct的实现原理

select dealid, count(distinct uid) num from order group by dealid;

当只有一个distinct字段时,如果不考虑Map阶段的Hash GroupBy,只需要将GroupBy字段和Distinct字段组合为map输出key,利用mapreduce的排序,同时将GroupBy字段作 为reduce的key,在reduce阶段保存LastKey即可完成去重


Distinct  mapreduce过程

说明:  因为是Distinct所以图的下半部分   从三行变成了两行,这里只列出不一样的行标记为1(value只是标记),方便后续统计,map排序后将相同key排在一起,此时相同的又只计数为一个,所以最终是  1001  不同的个数是2,  1002不同的也是2


如果有多个distinct字段呢,如下面的SQL

select dealid, count(distinct uid), count(distinct date) from order group by dealid;

实现方式有两种:

(1)如果仍然按照上面一个distinct字段的方法,即下图这种实现方式,无法跟据uid和date分别排序,也就无法通过LastKey去重,仍然需要在reduce阶段在内存中通过Hash去重


(2)第二种实现方式,可以对所有的distinct字段编号,每行数据生成n行数据,那么相同字段就会分别排序,这时只需要在reduce阶段记录LastKey即可去重。这种实现方式很好的利用了MapReduce的排序,节省了reduce阶段去重的内存消耗,但是缺点是增加了shuffle的数据量。需要注意的是,在生成reduce value时,除第一个distinct字段所在行需要保留value值,其余distinct数据行value字段均可为空。



出处

你可能感兴趣的:(Hive Distinct的实现原理)