huggingface上又很多开源模型,可以直接开箱即用,一个简单的模型使用实例如下:
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
有时候,我们需要finetune自己的模型,通常使用pytorch代码训练,写起来比较复杂,如果使用huggingface的trainer来训练就很方便了。
本文将使用trainer 训练一个牛客网讨论帖文本分类模型。详细过程如下:
数据集下载链接:
train data
test data
正常的训练演示用这两个数据集就够了,如果需要训练很精确的模型,可以使用伪标签大数据集generated pesudo data
数据集的结构如下:
每条数据包含一个文本和一个label,label为: [招聘信息、 经验贴、 求助贴] 三种类型之一。
我们需要加载数据集,并将文本tokenize成id,代码如下:
import pandas as pd
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification
model_name = "bert-base-chinese"
max_input_length = 128
label2id = {
'招聘信息':0,
'经验贴':1,
'求助贴':2
}
id2label = {v:k for k,v in label2id.items()}
tokenizer = AutoTokenizer.from_pretrained(model_name)
def preprocess_function(examples):
model_inputs = tokenizer(examples["text"], max_length=max_input_length, truncation=True)
labels = [label2id[x] for x in examples['target']]
model_inputs["labels"] = labels
return model_inputs
raw_datasets = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'test.csv'})
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets['train'].column_names)
评价指标metric用于evaluate的时候衡量模型的表现,这里使用f1 score 和 accuracy
import numpy as np
from sklearn.metrics import f1_score, accuracy_score, classification_report
from transformers import EvalPrediction
def multi_label_metrics(predictions, labels, threshold=0.5):
probs = np.argmax( predictions, -1)
y_true = labels
f1_micro_average = f1_score(y_true=y_true, y_pred=probs, average='micro')
accuracy = accuracy_score(y_true, probs)
print(classification_report([id2label[x] for x in y_true], [id2label[x] for x in probs]))
# return as dictionary
metrics = {'f1': f1_micro_average,
'accuracy': accuracy}
return metrics
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
result = multi_label_metrics(predictions=preds, labels=p.label_ids)
return result
加载模型,并构建TrainingArguments类,用于指定模型训练的各种参数
第一个是训练保存地址为必填项,其他都是选填项
from transformers import TrainingArguments, Trainer
batch_size = 64
training_args = TrainingArguments(
f"/root/autodl-tmp/run",
evaluation_strategy = "epoch",
save_strategy = "epoch",
learning_rate=2e-4,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
# gradient_accumulation_steps=2,
num_train_epochs=10,
save_total_limit=1,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model=metric_name,
fp16=True,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train() # 开始训练
print("test")
print(trainer.evaluate()) # 测试
trainer.save_model("bert") #保存模型
# 进行模型预测,并将预测结果输出便于观察
predictions, labels, _ = trainer.predict(tokenized_datasets["test"])
predictions = np.argmax(predictions, axis=-1)
print(predictions)
print(labels)
将上面代码整合到一起,结果如下:
import pandas as pd
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score, classification_report
from transformers import EvalPrediction
import evaluate
metric = evaluate.load("seqeval")
model_name = "uer/chinese_roberta_L-4_H-512"
tokenizer = AutoTokenizer.from_pretrained(model_name)
max_input_length = 128
label2id = {
'招聘信息':0,
'经验贴':1,
'求助贴':2
}
id2label = {v:k for k,v in label2id.items()}
def preprocess_function(examples):
model_inputs = tokenizer(examples["text"], max_length=max_input_length, truncation=True)
labels = [label2id[x] for x in examples['target']]
model_inputs["labels"] = labels
return model_inputs
raw_datasets = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'test.csv'})
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets['train'].column_names)
def multi_label_metrics(predictions, labels, threshold=0.5):
probs = np.argmax( predictions, -1)
y_true = labels
f1_micro_average = f1_score(y_true=y_true, y_pred=probs, average='micro')
accuracy = accuracy_score(y_true, probs)
print(classification_report([id2label[x] for x in y_true], [id2label[x] for x in probs]))
# return as dictionary
metrics = {'f1': f1_micro_average,
'accuracy': accuracy}
return metrics
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
result = multi_label_metrics(predictions=preds, labels=p.label_ids)
return result
model = AutoModelForSequenceClassification.from_pretrained(model_name,
# problem_type="multi_label_classification",
num_labels=3,
# id2label=id2label,
# label2id=label2id
)
batch_size = 64
metric_name = "f1"
training_args = TrainingArguments(
f"/root/autodl-tmp/run",
evaluation_strategy = "epoch",
save_strategy = "epoch",
learning_rate=2e-4,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
# gradient_accumulation_steps=2,
num_train_epochs=10,
save_total_limit=1,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model=metric_name,
fp16=True,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
print("test")
print(trainer.evaluate())
trainer.save_model("bert")
predictions, labels, _ = trainer.predict(tokenized_datasets["test"])
predictions = np.argmax(predictions, axis=-1)
print(predictions)
print(labels)
使用训练好的模型在其他数据集上推理预测,新数据集是从牛客网爬取的帖子信息,接近4万条,数据链接: historical_data
数据截图如下:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import pandas as pd
import torch
data = pd.read_excel("historical_data.xlsx", sheet_name=0).fillna(" ")
data['text'] = data['title'].apply(lambda x : str(x) if x else "") + data['content'].apply(lambda x : str(x) if x else "")
model_name = "bert"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if torch.cuda.is_available():
device = "cuda:0"
model.half()
else:
device = "cpu"
model = model.to(device)
max_target_length = 128
label2id = {
'招聘信息':0,
'经验贴':1,
'求助贴':2
}
id2label = {v:k for k,v in label2id.items()}
def get_answer(text):
text = [x for x in text]
inputs = tokenizer( text, return_tensors="pt", max_length=max_target_length, padding=True, truncation=True)
inputs = {k:v.to(device) for k,v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs).logits.argmax(-1).tolist()
return outputs
# print(get_answer(data['text'][:10]))
pred , grod = [], []
index, batch_size = 0, 32
while index < len(data['text']):
pred.extend(get_answer([x for x in data['text'][index:index + batch_size]]))
index += batch_size
# print(pred)
# print(grod)
pred = [id2label[x] for x in pred]
data["target"] = pred
writer = pd.ExcelWriter("generate.xlsx")
data.to_excel(writer, index=False, encoding='utf-8', sheet_name='Sheet1')
writer.save()
writer.close()
上面的例子是判别式模型,只用到了encoder,接下来训练一个encoder-decoder base的生成式模型T5,使用prompt用于训练,prompt方式如下:
input:
请问下面文本属于哪一类帖子?
秋招大结局(泪目了)。家人们泪目了,一波三折之后获得的小奖状,已经准备春招了,没想到被捞啦,嗐,总之是有个结果,还是很开心的[掉小珍珠了][掉小珍珠了]
选项:招聘信息, 经验贴, 求助贴
答案:
output:
经验贴
from datasets import load_dataset, load_metric
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
model_name = "ClueAI/ChatYuan-large-v1"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
max_input_length = 128
max_target_length = 20
prefix = "请问下面文本属于 招聘信息、 经验贴、 求助贴 三者中的哪一类?\n"
suffix = "\n选项:招聘信息, 经验贴, 求助贴\n答案:"
def preprocess_function(examples):
inputs = [prefix + doc + suffix for doc in examples["text"]]
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(examples["target"], max_length=max_target_length, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
raw_datasets = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'test.csv'})
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
这次使用不一样的方式来构建评价指标
import evaluate
metric = evaluate.load("seqeval")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = [tokenizer.batch_decode(predictions, skip_special_tokens=True)]
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = [tokenizer.batch_decode(labels, skip_special_tokens=True)]
return metric.compute(predictions=decoded_preds, references=decoded_labels)
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
batch_size = 4
args = Seq2SeqTrainingArguments(
f"yuan-finetuned-xsum",
evaluation_strategy = "epoch",
learning_rate=5e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size * 10,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=3,
predict_with_generate=True,
# fp16=True,
# push_to_hub=True,
)
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
print("test")
print(trainer.evaluate())
import pandas as pd
import numpy as np
from datasets import load_dataset, load_metric
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
import evaluate
metric = evaluate.load("seqeval")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = [tokenizer.batch_decode(predictions, skip_special_tokens=True)]
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = [tokenizer.batch_decode(labels, skip_special_tokens=True)]
return metric.compute(predictions=decoded_preds, references=decoded_labels)
model_name = "ClueAI/ChatYuan-large-v1"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
max_input_length = 252
max_target_length = 20
batch_size = 4
prefix = "请问下面文本属于 招聘信息、 经验贴、 求助贴 三者中的哪一类?\n"
suffix = "\n选项:招聘信息, 经验贴, 求助贴\n答案:"
def preprocess_function(examples):
inputs = [prefix + doc + suffix for doc in examples["text"]]
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(examples["target"], max_length=max_target_length, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
raw_datasets = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'test.csv'})
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
args = Seq2SeqTrainingArguments(
f"yuan-finetuned-yuan",
evaluation_strategy = "epoch",
learning_rate=5e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size * 10,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=3,
predict_with_generate=True,
fp16=True
)
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
print("test")
print(trainer.evaluate())
trainer.save_model("yuan")
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
import pandas as pd
import torch
data = pd.read_excel("historical_data.xlsx", sheet_name = 0).fillna(" ")
data['text'] = data['title'].apply(lambda x : str(x) if x else "") + data['content'].apply(lambda x : str(x) if x else "")
model_name = "yuan"
max_target_length = 512
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
if torch.cuda.is_available():
device = "cuda:0"
model.half()
else:
device = "cpu"
model = model.to(device)
prefix = "请问下面文本属于 招聘信息、 经验贴、 求助贴 三者中的哪一类?\n"
suffix = "\n选项:招聘信息, 经验贴, 求助贴\n答案:"
def get_answer(text):
if not text :
return ""
inputs = tokenizer( prefix + str(text) + suffix, return_tensors="pt", max_length=max_target_length, truncation=True)
inputs = {k:v.to(device) for k,v in inputs.items()}
# print(inputs)
outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True)
return tokenizer.decode(outputs[0][0], skip_special_tokens=True)
data['target'] = data['text'].map(get_answer) # not recommend, it's better to generate in batches
writer = pd.ExcelWriter("generate.xlsx")
data.to_excel(writer, index=False, encoding='utf-8', sheet_name='Sheet1')
writer.save()
writer.close()