根据RNA-seq差异基因进行GSEA分析

如果你觉得GOKEGG不够解释,或许可以试试GSEA

具体内容参考这篇

#GSEA analysis steps 
#得到差异分析结果
DESeq2_DEG = as.data.frame(read.table("路径/DESeq2_result.txt", sep = "\t", header = T, row.names = 1))
#提取log2FoldChange这列
geneList <- as.data.frame(DESeq2_DEG$log2FoldChange)

GSEA分析需要用ENTREZID!!!

#转换名字,调用需要的R包 
library(stringr) 
library(clusterProfiler) 
library(org.Hs.eg.db)

geneList_tr <- bitr(row.names(DESeq2_DEG), 
                    fromType = "SYMBOL", 
                    toType = c("ENTREZID","ENSEMBL"), 
                    OrgDb = org.Hs.eg.db)

#将ENTREZID与差异基因进行合并
DESeq2_DEG_withsymbol <- cbind(DESeq2_DEG, row.names(DESeq2_DEG))
names(DESeq2_DEG_withsymbol )[7]<- c("SYMBOL")

new_list <- merge(DESeq2_DEG_withsymbol, geneList_tr)
new_list <- merge(new_list, geneList_tr, by = "ENSEMBL") 

geneList <- new_list$log2FoldChange
names(geneList) <- geneList_tr$ENTREZID 
# 最后从大到小排序,得到一个字符串 
geneList <- sort(geneList,decreasing = T)

#进行GSEA富集分析
go_result <- gseGO(geneList = geneList, 
                     ont = "BP", 
                     OrgDb = org.Hs.eg.db,
                   keyType = "ENTREZID",
                   pvalueCutoff = 0.05,
                   pAdjustMethod = "BH")#p值校正方法

kegg_result <- gseKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  use_internal_data = FALSE,
  seed = FALSE,
  by = "fgsea")
head(kegg_result)
dim(kegg_result)
#按照enrichment score从高到低排序,便于查看富集通路

write.table(kegg_result,"路径/GSEA富集.txt",sep = "\t",quote = F,col.names = T,row.names = F)

#画GSEA富集图
library(enrichplot)
gseaplot2(
  kegg_result, #gseaResult object,即GSEA结果
  "hsa04727",#富集的ID编号
  #标题
  color = "green",#GSEA线条颜色
  base_size = 11,#基础字体大小
  rel_heights = c(1.5, 0.5, 1),#副图的相对高度
  subplots = 1:3, #要显示哪些副图 如subplots=c(1,3) #只要第一和第三个图,subplots=1#只要第一个图
  pvalue_table = FALSE, #是否添加 pvalue table
  ES_geom = "line") #running enrichment score用先还是用点ES_geom = "dot"
一个例子

如果想画好几条在一幅图 可以写

paths "hsa04510", "hsa04512", "hsa04974", "hsa05410")
gseaplot2(kk, paths)

你可能感兴趣的:(根据RNA-seq差异基因进行GSEA分析)