依次执行以下命令,在这里我用的是VOC数据集
cd /content/drive/MyDrive
!pip install torch==1.5.0 torchvision==0.6.0
!pip install mmcv-full==latest+torch1.5.0+cu101 -f https://openmmlab.oss-accelerate.aliyuncs.com/mmcv/dist/index.html
!git clone https://github.com.cnpmjs.org/open-mmlab/mmdetection.git
cd /content/drive/MyDrive/mmdetection
!pip install -r requirements/build.txt
!pip install -v -e . # or "python setup.py develop"
!python tools/train.py -h
cd /content/drive/MyDrive/mmdetection
!mkdir data
!mkdir data/VOCdevkit
cd /content/drive/MyDrive/mmdetection
!python tools/train.py ./configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
#!python tools/train.py ./configs/retinanet/retinanet_r50_fpn_1x_coco.py
#!python tools/train.py ./configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
注意:大部分含有逗号的地方,逗号都是需要保存的
所有的数据标签存放在:./data/VOCdevkit/VOC2007/Annotations
所有的图片数据存放在:./data/VOCdevkit/VOC2007/JPEGImage
修改:./mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
将其中的coco_detection修改为voc0712
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/voc0712.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
其他重要文件:
…/base/models/faster_rcnn_r50_fpn.py:定义模型文件
…/base/datasets/coco_detection.py:定义训练数据路径等
…/base/schedules/schedule_1x.py:定义学习策略,例如leaning_rate、epoch等
…/base/default_runtime.py:定义一些日志等其他信息
修改:./mmdetection/configs/base/datasets/voc712.py
使用的是VOC2007数据,因此只要把其中含有VOC2012路径注释即可,修改后的内容如下:
# dataset settings
dataset_type = 'VOCDataset'
data_root = 'data/VOCdevkit/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1000, 600),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='RepeatDataset',
times=3,
# dataset=dict(
# type=dataset_type,
# ann_file=[
# data_root + 'VOC2007/ImageSets/Main/trainval.txt',
# data_root + 'VOC2012/ImageSets/Main/trainval.txt'
# ],
# img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'],
# pipeline=train_pipeline)),
# 把含有VOC2012的路径去掉
dataset=dict(
type=dataset_type,
ann_file=[
data_root + 'VOC2007/ImageSets/Main/trainval.txt',
],
img_prefix=[data_root + 'VOC2007/'],
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
img_prefix=data_root + 'VOC2007/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
img_prefix=data_root + 'VOC2007/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='mAP')
修改:./mmdetection/configs/base/models/faster_rcnn_r50_fpn.py(个数)
修改:./mmdetection/mmdet/core/evaluation/class_names.py(名字)
修改:mmdetection/mmdet/datasets/voc.py(名字)