实战Google深度学习框架Tensorflow——mnist手写体识别

1.数据处理

MNIST数据集是NIST的子集,包含了60000张图片为训练数据,10000张作为测试数据,其中包含了训练数据与测试数据的图片及答案,每项图片的大小为28×28,数字都出现在图片的正中间。
而TensorFlow提供了一个类处理MNIST,将图片解析成需要的格式:

from tensorflow.examples.tutorials.mnist import input_data

# 载入数据集
mnist = input_data.read_data_sets("E:/minst", one_hot=True)
print("training datasize:", mnist.train.num_examples)
print("validating data size:", mnist.validation.num_examples)
print("testing data size:", mnist.test.num_examples)

print("Example training data: ", mnist.train.images[0])
print("Example training data label: ", mnist.train.labels[0])

输出:

training datasize: 55000
validating data size: 5000
testing data size: 10000
Example training data:  [0.  0.  0. ...0.380 0.376... 0.]
example training data label:  [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

像素矩阵中元素的取值范围为[0,1],0表示白色背景,1表示黑色前景

2.训练

以下为解决手写体识别的程序实例:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#数据集相关常数
INPUT_NODE = 784
OUTPUT_NODE = 10
#隐层节点
LAYER1_NODE = 500

BATCH_SIZE = 100
#
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001#正则化系数
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
#辅助函数
def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
    if avg_class is None:
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
        return tf.matmul(layer1, weights2) + biases2
    else:
        layer1 = tf.nn.relu(
            tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
        return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)

def train(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE],name="y-input")
    #生成隐层
    weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE],stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
    #生成输出层的参数
    weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
    #计算当前参数下神经网络前向传播结果,avg_class = None
    y = inference(x, None, weights1, biases1, weights2, biases2)
    #将代表训练轮数的变量指定为不可训练
    global_step = tf.Variable(0, trainable=False)
    #初始化滑动平均类
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    #对所有神经网络变量使用滑动平均。
    variable_averages_op = variable_averages.apply(tf.trainable_variables())
    #计算使用滑动平均后的前向传播结果
    average_y = inference(x, variable_averages, weights1, biases1,weights2,biases2)
    #交叉熵
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=y, labels=tf.arg_max(y_, 1))
    #交叉熵平均值
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    #L2正则化
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    #计算正则化损失
    regularization = regularizer(weights1) + regularizer(weights2)
    #总损失
    loss = cross_entropy_mean + regularization
    #学习率
    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,
                                               global_step,
                                               mnist.train.num_examples,
                                               LEARNING_RATE_DECAY)
    #梯度下降优化损失函数
    train_step = tf.train.GradientDescentOptimizer(learning_rate).\
        minimize(loss, global_step=global_step)
    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name='train')
    # 计算每一个样例的预测答案。其中average_y是一个batch_size*10的二维数组,
    # 每一行表示一个样例的前向传播结果
    # tf.argmax的第二个参数表示选取最大值的操作仅在第一个维度中进行,也就是说,
    # 只在每一行选取最大值对应的下标。
    # 于是得到的结果是一个长度为batch的一维数组,这个一维数组中的值表示每一个
    # 样例对应的数字识别结果
    # tf.equal判断两个张量的每一维是否相等,相等返回true
    correct_predition = tf.equal(tf.arg_max(average_y, 1), tf.arg_max(y_,1))
    #将bool转换为实数,再计算平均值
    accuracy = tf.reduce_mean(tf.cast(correct_predition,tf.float32))
    #开始训练
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        #验证数据,来判断停止的条件和评判训练的效果
        validate_feed = {x: mnist.validation.images,
                         y_: mnist.validation.labels}
        #准备测试数据
        test_feed = {x: mnist.test.images, y_:mnist.test.labels}
        #迭代训练
        for i in range(TRAINING_STEPS):
            if i % 1000 == 0:
                validate_acc = sess.run(accuracy, feed_dict=validate_feed)
                print("after %d training step(s), test ac"
                      "curacy using average "\
                      "model is %g " %(i, validate_acc))
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                sess.run(train_op, feed_dict={x: xs, y_: ys})

        test_acc = sess.run(accuracy, feed_dict=test_feed)
        print("after %d training step(s), test accuracy using average"
                  "model is %g "%(TRAINING_STEPS, test_acc))

def main(argv = None):
    #声明处理MNIST数据集的类
    mnist = input_data.read_data_sets("E:/minst", one_hot=True)
    train(mnist)
if __name__ ==  '__main__':
    tf.app.run()



1.mnist.train.next_batch可以从所有训练数据中读出一小部分作为一个训练batch,方便使用随机梯度下降算法。
2.tf.control_dependencies用于更新参数及其滑动平均值,与tf.group(train_step, variable_averages_op)作用相同。
3.tf.equal判断两个张量的每一维是否相等,相等返回true。
4.tf.argmax的第二个参数1表示选取最大值的操作仅在第一个维度中进行,即返回每一行最大值的下标
为0时,返回每一列最大值的下标。

你可能感兴趣的:(笔记,神经网络)