- 小波包阈值去噪方法
yyytucj
人工智能算法
针对小波包去噪对含强白噪声的信号处理效果不理想问题,提出了基于互相关分析优化的VMD-小波包阈值去噪方法。该方法融合了VMD和小波包去噪的优势,通过VMD把含噪信号分解成若干个模态分量,根据互相关分析提出的临界相关系数从所有模态分量中搜寻极优模态分量,之后利用小波包阈值去噪对极优模态分量进行处理。实验结果表明,该方法对含强白噪声的信号去噪效果具有优势,能够保全信号的有效分量,克服了传统VMD去噪的
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- 矢量化的步骤
create_right
GIS
1、扫描地图矢量化是把栅格数据转换成矢量数据的处理过程。扫描是纸质地图矢量化的第一步,它将纸质地图转化为计算机可以识别的数字形式。2、图像预处理图像预处理主要是消除图像中无关的信息,恢复有用的真实信息。图像预处理一般包括去噪声、几何纠正、投影变换等。1、几何校正由于地图受介质或存放条件等因素的影响,地图的纸张容易发生变形,或者遥感影像本身就存在着几何变形。几何校正最常用的方法是仿射变换法。2、投影
- ECCV2024|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码)【持续更新】
Kobaayyy
论文相关图像处理与计算机视觉底层视觉算法计算机视觉ECCV2024图像超分图像复原图像增强
ECCV2024|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)相关整理(RelatedCollections)**参考或转载请注明出处**1.超分辨率(Super-Resolution)AcceleratingImageSuper-ResolutionNetworkswithPixel-LevelClassificationAdaDiffSR:AdaptiveRegion-awareDy
- 频域分析:利用傅里叶变换(Fourier Transform)对图像进行深度解析
那雨倾城
OpenCV应用计算机视觉图像处理pythonopencv视觉检测
在图像处理和计算机视觉领域,傅里叶变换(FourierTransform)是一项基础而强大的工具。它将时域信号(如图像)转化为频域信号,为我们提供了图像的频率特性,这对于图像的分析、压缩、去噪和特征提取等任务非常重要。本文将深入探讨傅里叶变换在图像中的应用,并通过实例展示如何利用傅里叶变换对输入图像进行频域分析。1.什么是傅里叶变换?傅里叶变换是一种数学变换,它将信号从时域(或空间域)转换到频域。
- 【图像去噪】基础知识之BasicSR | BasicSR库的用法详解,包含各部分代码功能详细介绍(全代码注释),自己改进创新需要修改的位置等
十小大
图像去噪imagedenoising图像处理深度学习人工智能pytorchpython
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言1.BasicSR项目结构与开发方法2.dataset3.arch4.model4.1创建模型4.2模型基类4.3图像恢复模型5.utils6.train7.test
- VQ-Diffusion 深度解析与实战指南
晏灵昀Odette
VQ-Diffusion深度解析与实战指南VQ-Diffusion项目地址:https://gitcode.com/gh_mirrors/vqd/VQ-Diffusion1.项目介绍VQ-Diffusion是一个用于文本到图像合成的深度学习模型,基于矢量量化变分自编码器(VQ-VAE)和去噪扩散概率模型(DenoisingDiffusionProbabilisticModel)。该模型通过将DDP
- 基于Matlab实现汽车远近光灯识别的详细步骤及代码示例
go5463158465
matlab算法机器学习matlab汽车开发语言
以下是一个基于Matlab实现汽车远近光灯识别的详细步骤及代码示例,主要通过图像处理技术来区分远光灯和近光灯。整体思路图像预处理:包括读取图像、灰度化、去噪等操作,以提高后续处理的准确性。边缘检测:找出图像中的边缘信息,有助于定位灯光区域。特征提取:提取灯光区域的特征,如亮度、面积、形状等。模式识别:根据提取的特征,利用阈值或机器学习方法进行远近光灯的分类。代码实现%读取图像image=imrea
- OpenCV计算摄影学(2)图像去噪函数denoise_TVL1()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述原始-对偶算法是用于解决特定类型变分问题(即,寻找一个函数以最小化某个泛函)的算法。特别地,图像去噪可以被视为一种变分问题,因此可以使用原始-对偶算法来进行去噪,这正是这里实现的内容。需要注意的是,此实现取自2013年7月的一篇博客文章[194],该文章还包含了(
- 点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别(续)
格图素书
计算机视觉人工智能
目录3.1.2图像滤波去噪3.2道路纹理特征提取3.3基于超像素分割的图像特征表达3.3.1SLIC算法3.3.2改进SLIC算法的超像素特征图获取3.4基于改进区域生长算法的道路区域分割3.4.1种子点的选择3.4.2生长准则3.4.3道路区域后处理3.5实验结果分析4基于激光雷达点云的道路识别4.1点云预处理4.1.1点云数据解析4.1.2点云数据筛选4.1.3点云坐标转换4.2基于雷达图像的
- 【深度学习基础模型】去噪自编码器 (Denoising Autoencoders, DAE)详细理解并附实现代码。
985小水博一枚呀
深度学习学习笔记深度学习人工智能VAEpython学习autoencoder
【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders文章目录【深度学习基础模型】ExtractingandComposingRobustFeatureswithDeno
- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- 无人机遥感技术:从植被监测到生理参数反演的进阶之路
KY_chenzhao
无人机植被遥感参数反演
在当今的生态学和农林业研究中,无人机遥感技术已经成为获取植被信息的重要手段。它不仅能够快速覆盖大面积区域,还能提供高分辨率的多光谱和高光谱数据,为植被健康监测、生长状况评估和生理参数反演提供了强大的技术支持。今天,我们就来深入了解一下无人机遥感技术在植被定量监测中的应用。一、无人机遥感:为何备受青睐?无人机遥感技术结合了无人机的灵活性和遥感传感器的高精度,能够快速获取植被的多维度信息。与传统的卫星
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- 基于图像处理的裂缝宽度检测系统-matlab
人工智能专属驿站
计算机视觉图像处理人工智能
图像处理技术广泛地应用于桥梁、房屋、道路等工程施工中出现的表面裂缝,利用数字图像处理技术来测量结构物表面裂缝宽度是一种无损检测方法.基于图像处理的裂缝宽度检测系统需采用的图像处理算法有:(1)读取裂缝图像;(2)图像转化为灰度图像;(3)图像的增强;(4)平滑滤波;(5)阈值分割;(6)形态学去噪;(7)边缘检测(Canny算子);(8)边缘坐标点的提取;结果见:源程序见:基于图像处理的裂缝宽度检
- DDPM(Denoising Diffusion Probabilistic Models)的公式推导
AndrewHZ
机器学习人工智能深度学习算法
总结:DDPM通过最小化预测噪声的均方误差,使反向过程逐步去噪生成数据。核心推导在于通过变分推断将KL散度转换为噪声预测问题,大幅简化了训练目标。1.前向扩散过程前向过程通过\(T\)步逐渐向数据\(x_0\)添加高斯噪声,最终得到纯噪声\(x_T\)。每步定义为:\[q(x_t|x_{t-1})=\mathcal{N}\left(x_t;\sqrt{1-\beta_t}x_{t-1},\beta
- opencv 中值滤波
菩提本无树007
opencv计算机视觉人工智能
中值滤波是一种常用的图像滤波算法,是在像素点周围进行多个点的中值滤波,将点的灰度值根据其周围像素点的灰度值进行平均,并使这些点的灰度值具有相似性,以达到平滑去噪的目的。中值滤波在图像处理中应用广泛,在图像滤波和图像增强处理中得到了广泛应用。中值滤波的原理如下:(1)中值滤波是一种通过计算灰度图像各像素灰度值的均值来实现去噪的算法。它采用灰度均值来代替灰度方差,在保证灰度图像的基本信息不变的同时,滤
- 【python opencv】中值滤波
人才程序员
PythonOpencv视觉处理opencvpython计算机视觉python3.11人工智能开发语言qt
文章目录中值滤波通俗易懂的介绍简单解释:学术概念数学描述示例代码1.**中值滤波的实现**2.**中值滤波去噪**3.**调整中值滤波窗口大小**4.**自定义中值滤波器**总结中值滤波通俗易懂的介绍中值滤波(MedianFiltering)是一种常用于图像去噪的技术。它的核心思想是在图像的每个像素周围选择一个窗口,然后用这个窗口内所有像素的中值替换当前像素的值。中值滤波特别有效于去除“椒盐噪声”
- OCR - Tesseract的Windows下安装使用及ocr识别
坐望云起
深度学习从入门到精通tesseractwin10ocrLSTM光学字符识别
一、光学字符识别技术OCR(OpticalCharacterRecognition),中文是光学字符识别。是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。主要包含以下技术1、图像输入:要进行OCR识别,第一步就是通过采集所要识别的图像,可以是名片、身份证、护照、行驶证、驾驶证、公文、文档等等,然后将图像输入到识别核心区域。2、图像进行预处理:此过程包含二值化(像素)、去噪、倾斜
- OpenCV4.8 开发实战系列专栏之 27 - 边缘保留滤波算法-均值迁移模糊(mean-shift blur)
gloomyfish
OpenCV4.8从入门到工程实战算法均值算法opencv图像处理计算机视觉深度学习人工智能
欢迎大家学习OpenCV4.8开发实战专栏,长期更新,不断分享源码。专栏代码全部基于C++与Python双语演示。进贾老师OpenCV学堂交流群,+V:OpenCVXueTang_Asst本文关键知识点:边缘保留滤波算法-均值迁移模糊(mean-shiftblur)均值迁移模糊是图像边缘保留滤波算法中一种,经常用来在对图像进行分水岭分割之前去噪声,可以大幅度提升分水岭分割的效果。均值迁移模糊的主要
- Diffusion--人工智能领域的革命性技术
油泼辣子多加
专业名词解释人工智能
在人工智能领域,“diffusion”一词通常指的是“扩散模型”(DiffusionModels),其全称为“DenoisingDiffusionProbabilisticModels”(DDPMs)。扩散模型是一类生成式模型,它通过逐步去噪的方式,从随机噪声中生成高质量的数据,近年来在图像、音频、视频等多个领域取得了显著进展。1.发展历史扩散模型的概念源于物理学中的扩散过程,即粒子在介质中的随机
- 高光谱数据下载
左手拈花,右手舞剑
3S技术
1:WashingtonDCMal,IndianPine等https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html2:IndianPines,Salinas,PaviaCentreandUniversity,Cuprite等http://www.ehu.eus/ccwintco/index.php?title=Hypers
- 海思媒体处理平台架构分析
海思平台记录linux嵌入式
1.系统架构编辑2.海思媒体处理平台架构编辑主要分为:视频输入(VI):VI模块捕获视频图像,可对其做剪切、去噪等处理,并输出多路不同分辨率的图像数据。视频处理(VPSS):VPSS模块接收VI和解码模块发送过来的图像,可对图像进行图像增强、锐化等处理,并实现同源输出多路不同分辨率的图像数据用于编码、预览或抓拍。视频编码(VENC):编码模块接收VI捕获并经VPSS处理后输出的图像数据,可叠加用户
- 手撕Diffusion系列 - 第八期(end) - Diffusion推理
小菜鸟博士
手撕Diffusion深度学习人工智能算法面试学习
手撕Diffusion系列-第八期(end)-Diffusion推理目录手撕Diffusion系列-第八期(end)-Diffusion推理DDPM原理图DDPM反向去噪DIffusion推理代码Part1引入相关库函数Part2定义去噪函数Part3测试参考DDPM原理图DDPM包括两个过程:前向过程(forwardprocess)和反向过程(reverseprocess),其中前向过程又称为扩
- 什么是ISP?
一袋米扛几楼98
cameratunningISPCameraTuning相机c++
ISP(Imagesignalprocessor)图像信号处理,用于处理图像信号传感器(sensor)输出的图像信号。广义的ISP:ISP通过一系列数字图像处理算法完成对数字图像的效果处理。主要包括坏点校正、去噪、强光抑制、背光补偿、色彩增强、镜头阴影校正等处理。ISP的控制结构上图所示,lens将光信号投射到sensor的感光区域后,sensor经过光电转换,将bayer格式的原始图像送给ISP
- 简要说一下关于实现整个深度学习项目的流程
懒大王12138
机器学习深度学习神经网络人工智能算法
我们以识别生物信号为例子,其他类似与图像、文本和目标/故障检测的同样适用1.信号预处理;首先要将得到的生物信号进去噪音去除,另外所有的生物信号由于采样时间不同可能长度并不一样,这时候你需要统一长度。2.特征工程;你需要对所有的经过预处理并且将要输入神经网络的信号提取特征,比如信号的频谱图、时间-频率图或者是一些非线性的动力学特征,比如相空间这些。最重要的是提取的特征数据形状必须一致。3.搭建深度学
- 【数字信号去噪】LMS算法、AdaGrad、RMSProp、Adam算法数字信号去噪【含Matlab源码 11076期】
Matlab武动乾坤
Matlab信号处理(进阶版)matlab
Matlab武动乾坤博客之家博主简介:985研究生,Matlab领域科研开发者;座右铭:行百里者,半于九十。代码获取方式:CSDNMatlab武动乾坤—代码获取方式更多Matlab信号处理仿真内容点击①Matlab信号处理(进阶版)⛳️关注CSDNMatlab武动乾坤,更多资源等你来!!⛄一、LMS算法、AdaGrad、RMSProp、Adam算法数字信号去噪1LMS算法(LeastMeanSqu
- 【diffusers极速入门(四)】EMA 操作是什么?
多恩Stone
DiffusionAIGCTransformer人工智能深度学习pytorchpythonAIGCdiffusers
系列文章目录【diffusers极速入门(一)】pipeline实际调用的是什么?call方法!【diffusers极速入门(二)】如何得到扩散去噪的中间结果?Pipelinecallbacks管道回调函数【diffusers极速入门(三)】生成的图像尺寸与UNet和VAE之间的关系本文将介绍diffusers中常见的EMA操作。提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章
- 【diffusers极速入门(六)】缓存梯度和自动放缩学习率以及代码详解
多恩Stone
AIGCDiffusion编程学习diffuserspytorchAIDeeplearningAIGCpython
系列文章目录【diffusers极速入门(一)】pipeline实际调用的是什么?call方法!【diffusers极速入门(二)】如何得到扩散去噪的中间结果?Pipelinecallbacks管道回调函数【diffusers极速入门(三)】生成的图像尺寸与UNet和VAE之间的关系【diffusers极速入门(四)】EMA操作是什么?【diffusers极速入门(五)】扩散模型中的Schedul
- 智能体(Agent)如何具备自我决策能力的机理与实现方法
由数入道
人工智能应急管理人工智能自然语言处理
一、智能体自我决策能力的机理从人工智能和控制理论的角度看,智能体能够“自我决策”的核心在于其“感知–认知–行动”的循环过程,以及在此过程中引入自主学习与自主优化的机制。经过优化与补充,智能体具备自我决策能力的机理可以分解为以下五个部分:1.自主感知与信息获取智能体通过传感器、数据库、互联网信息等多源数据采集,构建全面的环境感知能力。通过数据清洗、去噪、融合等方法,提升感知数据的可靠性,结合高维特征
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb