MNIST手写数字识别 python

# encoding: utf-8
'''
@author: hxk
@contact: [email protected]
@software: garner
@file: main_keras.py
@time: 2019/5/13 14:21
@desc:
'''

import cv2 as cv
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop, SGD

from sklearn.preprocessing import LabelBinarizer
import pickle

MODEL_FILENAME = "captcha_model.hdf5"
MODEL_LABELS_FILENAME = "model_labels.dat"

def test():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    print(x_train[0].shape, y_train[0])

def train_and_save_model():
    # the data, split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    # for i in range(5):
    #     cv.imwrite("{}.png".format(i), x_train[i])
    lb = LabelBinarizer().fit(y_train)
    with open(MODEL_LABELS_FILENAME, "wb") as f:
        pickle.dump(lb, f)
    # 由于mnist的输入数据维度是(num, 28, 28),这里需要把后面的维度直接拼起来变成784维
    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255  # 归一化,所有数值在 0 - 1 之间
    x_test /= 255
    print(x_train.shape[0], 'train samples') # 60000
    print(x_test.shape[0], 'test samples')   # 10000

    # convert class vectors to binary class matrices
    print(y_train[0]) # 5
    y_train = keras.utils.to_categorical(y_train) # 把 y 变成了 one-hot 的形式
    print(y_train[0]) # [ 0.  0.  0.  0.  0.  1.  0.  0.  0.  0.]
    y_test = keras.utils.to_categorical(y_test)


    batch_size = 128
    num_classes = 10
    epochs = 20

    model = Sequential()
    model.add(Dense(512, activation='relu', input_shape=(784,)))
    model.add(Dropout(0.2))
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(num_classes, activation='softmax'))

    #model.summary()  # 打印出模型概况

    model.compile(loss='categorical_crossentropy',
                  optimizer=RMSprop(),
                  metrics=['accuracy'])

    history = model.fit(x_train, y_train,
                        batch_size=batch_size,
                        epochs=epochs,
                        verbose=1, # verbose是屏显模式, 0是不屏显,1是显示一个进度条,2是每个epoch都显示一行数据
                        validation_data=(x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose=0)
    # 保存上述模型和数据
    model.save(MODEL_FILENAME)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])


def recognition(file_path):
    """
    识别图片
    :param file_path:
    :return:
    """
    with open(MODEL_LABELS_FILENAME, "rb") as f:
        lb = pickle.load(f)
    img = cv.imread(file_path)
    img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    img = img.reshape(1, 28*28)

    # 直接加载上述模型
    model = load_model(MODEL_FILENAME)

    result = model.predict(img)
    letter = lb.inverse_transform(result)[0]
    print(letter)

# train_and_save_model()
recognition('0.png')
# test()```

你可能感兴趣的:(MNIST手写数字识别 python)