- FTTR(Fiber to the Room)一主一从
FTTR(FibertotheRoom)一主一从是家庭或企业光纤组网中的一种设备配置方式,具体含义如下:1.基本概念FTTR:指光纤直接延伸到每个房间(替代传统网线),实现全屋千兆/万兆覆盖。一主一从:由一台主光猫(主网关)和一台从光猫(从网关)组成的网络架构,通过光纤连接,形成主从协作的网络系统。2.主设备和从设备的作用主光猫(主网关)直接连接运营商的光纤入户线路,负责拨号、路由、Wi-Fi覆盖
- R 语言简介:数据分析与统计的强大工具
Mikhail_G
python数据分析大数据r语言开发语言
大家好!在如今这个数据驱动的时代,数据分析与统计分析对于各个领域都变得至关重要。而R语言,作为一款专为数据分析和统计而设计的编程语言,以其强大的功能和灵活性,成为了众多数据分析师、研究人员以及统计学家的首选工具之一。什么是R语言?R是一种开源的编程语言和软件环境,主要用于统计计算、数据分析、图形表示以及机器学习等领域。它是由RossIhaka和RobertGentleman于1995年开发的,之后
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- 大模型量化
需要重新演唱
大模型量化
大模型量化是一种优化技术,旨在减少深度学习模型的内存占用和提高推理速度,同时尽量保持模型的精度。量化通过将模型中的浮点数权重和激活值转换为较低精度的表示形式来实现这一目标。以下是关于大模型量化的详细知识:目录1.量化基础1.1量化定义1.2量化优势1.3量化挑战2.量化方法2.1量化类型2.2量化粒度2.3量化算法3.量化实践3.1量化流程3.2量化工具4.量化案例4.1BERT量化4.2GPT-
- 【面试宝典】【大模型入门】【模型微调】
曾小文
人工智能深度学习机器学习
面试热点科普:监督微调vs无监督微调,有啥不一样?在大模型时代(比如BERT、GPT)里,我们经常听到“预训练+微调”的范式。但你可能会疑惑——监督微调、无监督微调,到底有啥区别?用的场景一样吗?今天这篇,带你5分钟搞懂这对“孪生兄弟”的异同✅1.术语定义名称定义说明预训练(Pretraining)在大规模通用数据上训练模型,学习“通用知识”,比如语言规律、语义表示。微调(Fine-tuning)
- 中文工单分类模型选择
SugarPPig
人工智能分类人工智能数据挖掘
采用基于预训练模型的微调(Fine-tuning)方案来做中文工单分类,这是非常明智的选择,因为预训练模型已经在大量中文语料上学习了丰富的语言知识,能大幅提升分类效果。在HuggingFace上,针对中文文本分类,我为你推荐以下最合适的模型:最推荐的模型:BERT-base-chinese模型名称(HuggingFaceID):google-bert/bert-base-chinese为什么推荐它
- ⼤模型(LLMs)基础⾯
cv2016_DL
LLM大模型计算机视觉人工智能llama
1.⽬前主流的开源模型体系有哪些?⽬前主流的开源LLM(语⾔模型)模型体系包括以下⼏个:1.GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的⼀系列基于Transformer架构的语⾔模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在⼤规模⽆标签⽂本上进⾏预训练,然后在特定任务上进⾏微调,具有很强的⽣成能⼒和语⾔理解能⼒。2.BERT(B
- 使用Hugging Face的Sentence Transformers进行文本嵌入
2501_92325368
语言模型langchain
概述HuggingFace的SentenceTransformers是一种用于生成文本和图像嵌入的Python框架,提供了最新的技术。这个框架可以通过HuggingFaceEmbeddings类来使用嵌入模型。尽管它功能强大,但在本地运行可能会受到操作系统和其他因素的影响,因此推荐给有经验的用户使用。核心原理解析SentenceTransformers基于BERT等深度学习模型,通过转化输入文本为
- 波动方程延拓法求解
weixin_30777913
算法
题目问题8.使用延拓法结合达’Alembert公式解决以下十二个问题中的每一个。第一个问题:{utt−c2uxx=0,x>0,u∣t=0=0,x>0,ut∣t=0=cos(x),x>0,u∣x=0=0,t>0;\begin{cases}u_{tt}-c^2u_{xx}=0,&x>0,\\u|_{t=0}=0,&x>0,\\u_t|_{t=0}=\cos(x),&x>0,\\u|_{x=0}=0,
- WPF textbox头尾添加文本
一个输入数据个数的文本框publicclassNumberToStringConverter:IValueConverter{publicobjectConvert(objectvalue,TypetargetType,objectparameter,CultureInfoculture){if(value==null||string.IsNullOrEmpty(value.ToString())
- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- 大模型学习 (Datawhale_Happy-LLM)笔记4: 预训练语言模型
lxltom
学习笔记语言模型人工智能bertgpt
大模型学习(Datawhale_Happy-LLM)笔记4:预训练语言模型一、概述本章按Encoder-Only、Encoder-Decoder、Decoder-Only的顺序来依次介绍Transformer时代的各个主流预训练模型,分别介绍三种核⼼的模型架构、每种主流模型选择的预训练任务及其独特优势,这也是目前所有主流LLM的模型基础。二、Encoder-onlyPLM代表:BERT及其优化版本
- OSError: We couldn‘t connect to ‘https://huggingface.co‘ to load this file, couldn‘t find it in the
是纯一呀
NLPAIDeepLearningdeeplearningNLP
OSError:Wecouldn'tconnectto'https://huggingface.co'toloadthisfile,couldn'tfinditinthecachedfilesanditlookslikeroberta-baseisnotthepathtoadirectorycontainingafilenamedconfig.json.Checkoutyourinternetco
- GED-VIZ部署解决方案
yoyo_573
gitlab
项目https://github.com/bertelsmannstift/GED-VIZ最终结果如图:依赖要求:Dependencies一、Ruby1.9.3(MRI)withRubyGems.AlsoworkswithRuby2.1.(测试ruby2.4兼容性更好)二、MySQL5.1ornewer(测试过MYSQL5.7在迁移过程会有兼容性问题,建议MYSQL5.5)三、PhantomJSf
- 预训练目标:BERT 更适配 “理解类” 任务
在NLP任务中,更倾向于用BERT而非GPT做预训练,核心原因与两者的模型设计、任务适配性、资源成本有关,具体可从以下维度拆解:一、预训练目标:BERT更适配“理解类”任务BERT的双向预训练目标:通过掩码语言模型(MLM)和下一句预测(NSP),强制模型学习上下文的双向语义依赖(比如用“[MASK]是水果”的前后文猜“苹果”),天生适合文本理解、分类、问答等任务。GPT的单向预训练目标:基于自回
- Codeforce 884C - Bertown Subway
weixin_34281477
C.BertownSubwaytimelimitpertest1secondmemorylimitpertest256megabytesinputstandardinputoutputstandardoutputTheconstructionofsubwayinBertownisalmostfinished!ThePresidentofBerlandwillvisitthiscitysoontol
- Educational Codeforces Round 31 C.Bertown Subway(图论)
ganzibang
ACM-图论图论
题目链接:BertownSubway题意:简单地说,就是给一个n个地铁站的线路图,每个地铁站i有一趟地铁从i站出发,到达目的站pi,pi可以等于i且满足条件:对于每个i站,只存在一个j站使得pj=i。定义有序对pair(a,b)表示从a站到b站,现在给你一个机会在满足条件下可以改变不超过两个地铁站的pi,使得(a,b)的个数最多,问最多个数是多少?题解:题目先输入一个n,在输入pi,而且每个pi是
- codeforces 884C. Bertown Subway
C.BertownSubwaytimelimitpertest1secondmemorylimitpertest256megabytesinputstandardinputoutputstandardoutputTheconstructionofsubwayinBertownisalmostfinished!ThePresidentofBerlandwillvisitthiscitysoontol
- 十分钟带你入门Go语言(Golang)开发
gopyer
十分钟入门系列golang开发语言后端十分钟带你入门
概述Go语言是由Google的RobertGriesemer,RobPike及KenThompson开发的一种静态强类型、编译型语言。Go语言的设计目标是将静态语言的安全性和性能与动态语言的易用性相结合。Go语言在语言层面提供了对协程的支持,特别适合编写高并发的项目。随着使用Go语言开发的Docker、Kubernetes、Isito等容器化技术的兴起,Go语言越来越被广大开发者所青睐,一度从TI
- BERT模型微调全攻略:从数据准备到模型部署
AI智能探索者
bert人工智能深度学习ai
BERT模型微调全攻略:从数据准备到模型部署关键词:BERT模型、模型微调、数据准备、模型训练、模型部署摘要:本文全面介绍了BERT模型微调的整个流程,从数据准备开始,逐步讲解了数据预处理、模型训练以及最终的模型部署等关键步骤。通过通俗易懂的语言和详细的代码示例,帮助读者理解BERT模型微调的原理和操作方法,以便在实际项目中更好地应用BERT模型。背景介绍目的和范围我们的目的是让大家学会如何对BE
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 大模型学习路线:这会是你见过最全最新的大模型学习路线【2025最新】
大模型入门学习
学习人工智能产品经理大模型AI产品经理程序员大模型学习
大模型学习路线建议先从主流的Llama开始,然后选用中文的Qwen/Baichuan/ChatGLM,先快速上手体验prompt工程,然后再学习其架构,跑微调脚本如果要深入学习,建议再按以下步骤,从更基础的GPT和BERT学起,因为底层是相通的,而且实际落地到一个系统中,应该也是大模型结合小模型(大模型在做判别性的任务上,比BERT优势不是特别大)可以参考如下方案,按需学习。一、简述按个人偏好总结
- Python面向对象设计:SOLID原则详解
Yant224
python#面向对象编程python面向对象设计SOLID原则Python编程软件架构设计模式代码质量
一、SOLID原则概述1.1为什么需要设计原则?软件需求变化代码腐化维护成本增加开发效率下降系统重构SOLID原则是打破这一恶性循环的关键,由RobertC.Martin提出,包含五大核心原则:原则简称核心思想单一职责原则SRP一个类只有一个改变的理由开闭原则OCP对扩展开放,对修改关闭里氏替换原则LSP子类必须能替换父类接口隔离原则ISP多个专用接口优于单一通用接口依赖倒置原则DIP依赖抽象而非
- DeepSpeed 深度学习学习笔记:高效训练大型模型
主要参考官网文档,对于具体内容还需参考官方文档1.引言:为什么需要DeepSpeed?大型模型训练的挑战随着深度学习模型规模的爆炸式增长(从BERT的几亿参数到GPT-3的千亿参数,再到现在的万亿参数模型),传统的单GPU训练方式变得力不从心,即使是多GPU训练也面临巨大挑战:内存限制(MemoryWall):模型参数:模型的参数量巨大,例如一个1750亿参数的GPT-3模型,即使使用FP16精度
- BERT-NER-Pytorch 深度学习教程
富茉钰Ida
BERT-NER-Pytorch深度学习教程BERT-NER-PytorchChineseNER(NamedEntityRecognition)usingBERT(Softmax,CRF,Span)项目地址:https://gitcode.com/gh_mirrors/be/BERT-NER-Pytorch1.项目介绍BERT-NER-Pytorch是一个基于PyTorch实现的中文命名实体识别(
- 从代码学习深度学习 - 预训练BERT PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
文章目录前言一、数据准备:为BERT量身打造“教科书”1.1数据处理工具函数(`utils_for_data.py`)1.2加载数据二、模型构建:从零搭建BERT2.1模型工具函数(`utils_for_model.py`)2.2初始化模型和设备三、训练过程:让BERT开始学习3.1训练辅助工具(`utils_for_train.py`&`utils_for_huitu.py`)3.2损失计算与训
- 大模型基础全解:转行大模型开发所需的知识体系、能力要求及学习路径总结
程序员鑫港
学习java数据库
引言随着人工智能和大模型(如GPT-4、BERT等)技术的快速发展,越来越多的专业人士希望转行进入这一领域。大模型开发涉及复杂的技术体系和多样的应用场景,对从业者的知识和能力提出了较高要求。本文将详细解析转行大模型开发所需的知识体系、能力要求及学习路径,并结合实际数据和案例,提供深度指导。前排提示,文末有大模型AGI-CSDN独家资料包哦!一、基础知识和能力1.编程语言大模型开发离不开编程,以下是
- A基础语法.go
是紫焅呢
26字母学习:Go入门篇golang开发语言后端青少年编程visualstudiocode学习方法
前言:Go语言(又称Golang)以其简洁、高效的特性,在编程领域崭露头角。它由Google公司的RobertGriesemer、RobPike和KenThompson于2007年创建,旨在提高编程效率,简化并发编程,同时保持良好的性能。目录一、引言二、第一个Go程序三、变量与数据类型变量声明基本数据类型四、控制流语句条件语句循环语句五、函数函数定义函数调用匿名函数六、数组与切片数组切片七、映射(
- 【大模型开发】Hugging Face的Transformers库详解介绍与案例
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习transformerhuggingface大模型技术大模型开发deepseek机器学习深度学习
深入解析HuggingFaceTransformers及开源大模型微调实践HuggingFaceTransformers已成为自然语言处理(NLP)乃至多模态(跨语言、图像、音频等)应用中最为流行、功能最完备的开源框架之一。它将主流的预训练模型(如BERT、GPT、T5、VisionTransformer等)统一整合在同一套API下,并提供了丰富的工具支持快速训练、推理与部署。本篇文章将:介绍Hu
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri