本文主要介绍iOS三种多线程的常见使用方法
NSThread
- 苹果官方提供的
面向对象
的线程操作技术 - 是对
thread
的上层封装,简单易用,可以直接操作线程对象 - 需要
自己管理线程生命周期(主要是创建)
- 在开发中我们偶尔会使用NSThread,例如调用[NSThread currentThread]显示当前线程
创建线程
//方式一:初始化方式,需要手动启动
NSThread *thread1 = [[NSThread alloc] initWithTarget:self selector:@selector(doSomething:) object:@"threadName1"];
[thread1 start];//手动启动
//方式二:构造器方式,自动启动
[NSThread detachNewThreadSelector:@selector(doSomething:) toTarget:self withObject:@"threadName2"];
//方式三:performSelector...方法创建
[self performSelectorInBackground:@selector(doSomething:) withObject:@"threadName3"];
//方式四:主线程
[self performSelectorOnMainThread:@selector(doSomething:) withObject:@"threadNameMain" waitUntilDone:YES];
属性
- thread.isExecuting //线程是否在执行
- thread.isCancelled //线程是否被取消
- thread.isFinished //是否完成
- thread.isMainThread //是否是主线程
- thread.threadPriority //线程的优先级,取值范围0.0-1.0,默认优先级0.5,1.0表示最高优先级,优先级高,CPU调度的频率高
常见API
// 获得主线程
+ (NSThread *)mainThread;
// 判断是否为主线程(对象方法)
- (BOOL)isMainThread;
// 判断是否为主线程(类方法)
+ (BOOL)isMainThread;
// 获得当前线程
NSThread *current = [NSThread currentThread];
// 线程的名字——setter方法
- (void)setName:(NSString *)n;
// 线程的名字——getter方法
- (NSString *)name;
线程状态控制
// 线程进入就绪状态 -> 运行状态。当线程任务执行完毕,自动进入死亡状态
- (void)start;
// 线程进入阻塞状态
+ (void)sleepUntilDate:(NSDate *)date;
+ (void)sleepForTimeInterval:(NSTimeInterval)ti;
//强制停止线程 线程进入死亡状态
+ (void)exit;
线程通信
// 在主线程上执行操作
- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg waitUntilDone:(BOOL)wait;
- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg waitUntilDone:(BOOL)wait modes:(NSArray *)array;
// equivalent to the first method with kCFRunLoopCommonModes
// 在指定线程上执行操作
- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg waitUntilDone:(BOOL)wait modes:(NSArray *)array NS_AVAILABLE(10_5, 2_0);
- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg waitUntilDone:(BOOL)wait NS_AVAILABLE(10_5, 2_0);
// 在当前线程上执行操作,调用 NSObject 的 performSelector:相关方法
- (id)performSelector:(SEL)aSelector;
- (id)performSelector:(SEL)aSelector withObject:(id)object;
- (id)performSelector:(SEL)aSelector withObject:(id)object1 withObject:(id)object2;
GCD
dispatch_after
- 在某个队列中的block延迟执行
延迟加入队列,而不是延迟执行
/*
dispatch_after表示在某队列中的block延迟执行
应用场景:在主队列上延迟执行一项任务,如viewDidload之后延迟1s,提示一个alertview(是延迟加入到队列,而不是延迟执行)
*/
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"2s后输出");
});
dispatch_once
- 确保block中代码只执行一次
/*
dispatch_once保证在App运行期间,block中的代码只执行一次
应用场景:单例、method-Swizzling
*/
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
//创建单例、method swizzled或其他任务
NSLog(@"创建单例");
});
dispatch_apply
- 将Block中任务追加到指定队列中重复执行,并订到全部的处理执行结束,相当于
线程安全的for循环
- 如果要按序执行,可以添加在在
串行队列
/*
dispatch_apply将指定的Block追加到指定的队列中重复执行,并等到全部的处理执行结束——相当于线程安全的for循环
应用场景:用来拉取网络数据后提前算出各个控件的大小,防止绘制时计算,提高表单滑动流畅性
- 添加到串行队列中——按序执行
- 添加到主队列中——死锁
- 添加到并发队列中——乱序执行
- 添加到全局队列中——乱序执行
*/
dispatch_queue_t queue = dispatch_queue_create("CJL", DISPATCH_QUEUE_SERIAL);
NSLog(@"dispatch_apply前");
/**
param1:重复次数
param2:追加的队列
param3:执行任务
*/
dispatch_apply(10, queue, ^(size_t index) {
NSLog(@"dispatch_apply 的线程 %zu - %@", index, [NSThread currentThread]);
});
NSLog(@"dispatch_apply后");
dispatch_group_t
- 【方式一】dispatch_group_async + dispatch_group_notify
/*
dispatch_group_t:调度组将任务分组执行,能监听任务组完成,并设置等待时间
应用场景:多个接口请求之后刷新页面
*/
dispatch_group_t group = dispatch_group_create();
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_group_async(group, queue, ^{
NSLog(@"请求一完成");
});
dispatch_group_async(group, queue, ^{
NSLog(@"请求二完成");
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"刷新页面");
});
- 【方式二】
dispatch_group_enter + dispatch_group_leave + dispatch_group_notify
/*
dispatch_group_enter和dispatch_group_leave成对出现,使进出组的逻辑更加清晰
*/
dispatch_group_t group = dispatch_group_create();
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"请求一完成");
dispatch_group_leave(group);
});
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"请求二完成");
dispatch_group_leave(group);
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"刷新界面");
});
- 【方式三】在【方式二】基础上增加超时
dispatch_group_wait
/*
long dispatch_group_wait(dispatch_group_t group, dispatch_time_t timeout)
group:需要等待的调度组
timeout:等待的超时时间(即等多久)
- 设置为DISPATCH_TIME_NOW意味着不等待直接判定调度组是否执行完毕
- 设置为DISPATCH_TIME_FOREVER则会阻塞当前调度组,直到调度组执行完毕
返回值:为long类型
- 返回值为0——在指定时间内调度组完成了任务
- 返回值不为0——在指定时间内调度组没有按时完成任务
*/
dispatch_group_t group = dispatch_group_create();
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"请求一完成");
dispatch_group_leave(group);
});
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"请求二完成");
dispatch_group_leave(group);
});
// long timeout = dispatch_group_wait(group, DISPATCH_TIME_NOW);
// long timeout = dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
long timeout = dispatch_group_wait(group, dispatch_time(DISPATCH_TIME_NOW, 1 *NSEC_PER_SEC));
NSLog(@"timeout = %ld", timeout);
if (timeout == 0) {
NSLog(@"按时完成任务");
}else{
NSLog(@"超时");
}
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"刷新界面");
});
dispatch_barrier_sync & dispatch_barrier_async
同步锁
- 先执行栅栏前任务,再执行栅栏任务,最后执行栅栏后任务
-
dispatch_barrier_sync
:等待前面任务执行完毕,但是会堵塞队列和线程
,影响后面的任务执行 -
dispatch_barrier_async
:等待前面任务执行完毕,可以控制队列中任务的执行顺序
串行队列
//串行队列使用栅栏函数
dispatch_queue_t queue = dispatch_queue_create("CJL", DISPATCH_QUEUE_SERIAL);
NSLog(@"开始 - %@", [NSThread currentThread]);
dispatch_async(queue, ^{
sleep(2);
NSLog(@"延迟2s的任务1 - %@", [NSThread currentThread]);
});
NSLog(@"第一次结束 - %@", [NSThread currentThread]);
//栅栏函数的作用是将队列中的任务进行分组,所以我们只要关注任务1、任务2
dispatch_barrier_async(queue, ^{
NSLog(@"------------栅栏任务------------%@", [NSThread currentThread]);
});
NSLog(@"栅栏结束 - %@", [NSThread currentThread]);
dispatch_async(queue, ^{
sleep(2);
NSLog(@"延迟2s的任务2 - %@", [NSThread currentThread]);
});
NSLog(@"第二次结束 - %@", [NSThread currentThread]);
并发队列
//并发队列使用栅栏函数
dispatch_queue_t queue = dispatch_queue_create("CJL", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"开始 - %@", [NSThread currentThread]);
dispatch_async(queue, ^{
sleep(2);
NSLog(@"延迟2s的任务1 - %@", [NSThread currentThread]);
});
NSLog(@"第一次结束 - %@", [NSThread currentThread]);
//由于并发队列异步执行任务是乱序执行完毕的,所以使用栅栏函数可以很好的控制队列内任务执行的顺序
dispatch_barrier_async(queue, ^{
NSLog(@"------------栅栏任务------------%@", [NSThread currentThread]);
});
NSLog(@"栅栏结束 - %@", [NSThread currentThread]);
dispatch_async(queue, ^{
sleep(2);
NSLog(@"延迟2s的任务2 - %@", [NSThread currentThread]);
});
NSLog(@"第二次结束 - %@", [NSThread currentThread]);
dispatch_semaphore_t
-
同步锁
,控制GCD最大并发数
/*
应用场景:同步当锁, 控制GCD最大并发数
- dispatch_semaphore_create():创建信号量
- dispatch_semaphore_wait():等待信号量,信号量减1。当信号量< 0时会阻塞当前线程,根据传入的等待时间决定接下来的操作——如果永久等待将等到信号(signal)才执行下去
- dispatch_semaphore_signal():释放信号量,信号量加1。当信号量>= 0 会执行wait之后的代码
*/
dispatch_queue_t queue = dispatch_queue_create("CJL", DISPATCH_QUEUE_CONCURRENT);
for (int i = 0; i < 10; i++) {
dispatch_async(queue, ^{
NSLog(@"当前 - %d, 线程 - %@", i, [NSThread currentThread]);
});
}
//利用信号量来改写
dispatch_semaphore_t sem = dispatch_semaphore_create(0);
for (int i = 0; i < 10; i++) {
dispatch_async(queue, ^{
NSLog(@"当前 - %d, 线程 - %@", i, [NSThread currentThread]);
dispatch_semaphore_signal(sem);
});
dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
}
dispatch_source_t
- 用于计时操作,其原因是因为它创建的timer
不依赖于RunLoop
,且计时精准度比NSTimer高
/*
dispatch_source
应用场景:GCDTimer
在iOS开发中一般使用NSTimer来处理定时逻辑,但NSTimer是依赖Runloop的,而Runloop可以运行在不同的模式下。如果NSTimer添加在一种模式下,当Runloop运行在其他模式下的时候,定时器就挂机了;又如果Runloop在阻塞状态,NSTimer触发时间就会推迟到下一个Runloop周期。因此NSTimer在计时上会有误差,并不是特别精确,而GCD定时器不依赖Runloop,计时精度要高很多
dispatch_source是一种基本的数据类型,可以用来监听一些底层的系统事件
- Timer Dispatch Source:定时器事件源,用来生成周期性的通知或回调
- Signal Dispatch Source:监听信号事件源,当有UNIX信号发生时会通知
- Descriptor Dispatch Source:监听文件或socket事件源,当文件或socket数据发生变化时会通知
- Process Dispatch Source:监听进程事件源,与进程相关的事件通知
- Mach port Dispatch Source:监听Mach端口事件源
- Custom Dispatch Source:监听自定义事件源
主要使用的API:
- dispatch_source_create: 创建事件源
- dispatch_source_set_event_handler: 设置数据源回调
- dispatch_source_merge_data: 设置事件源数据
- dispatch_source_get_data: 获取事件源数据
- dispatch_resume: 继续
- dispatch_suspend: 挂起
- dispatch_cancle: 取消
*/
//1.创建队列
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
//2.创建timer
dispatch_source_t timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
//3.设置timer首次执行时间,间隔,精确度
dispatch_source_set_timer(timer, DISPATCH_TIME_NOW, 2.0*NSEC_PER_SEC, 0.1*NSEC_PER_SEC);
//4.设置timer事件回调
dispatch_source_set_event_handler(timer, ^{
NSLog(@"GCDTimer");
});
//5.默认是挂起状态,需要手动激活
dispatch_resume(timer);
NSOperation
- 基于
GCD
的上层封装,需要配合NSOperationQueue
实现多线程 - 是一个
抽象类
,实际运用中使用的是它的子类NSInvocationOperation
、NSBlockOperation
、自定义NSOperation子类
//基本使用
- (void)cjl_testBaseNSOperation{
//处理事务
NSInvocationOperation *op = [[NSInvocationOperation alloc] initWithTarget:self selector:@selector(handleInvocation::) object:@"CJL"];
//创建队列
NSOperationQueue *queue = [[NSOperationQueue alloc] init];
//操作加入队列
[queue addOperation:op];
}
- (void)handleInvocation:(id)operation{
NSLog(@"%@ - %@", operation, [NSThread currentThread]);
}
NSInvocationOperation
//直接处理事务,不添加隐性队列
- (void)cjl_createNSOperation{
//创建NSInvocationOperation对象并关联方法,之后start。
NSInvocationOperation *invocationOperation = [[NSInvocationOperation alloc] initWithTarget:self selector:@selector(doSomething:) object:@"CJL"];
[invocationOperation start];
}
NSBlockOperation
- (void)cjl_testNSBlockOperationExecution{
//通过addExecutionBlock这个方法可以让NSBlockOperation实现多线程。
//NSBlockOperation创建时block中的任务是在主线程执行,而运用addExecutionBlock加入的任务是在子线程执行的。
NSBlockOperation *blockOperation = [NSBlockOperation blockOperationWithBlock:^{
NSLog(@"main task = >currentThread: %@", [NSThread currentThread]);
}];
[blockOperation addExecutionBlock:^{
NSLog(@"task1 = >currentThread: %@", [NSThread currentThread]);
}];
[blockOperation addExecutionBlock:^{
NSLog(@"task2 = >currentThread: %@", [NSThread currentThread]);
}];
[blockOperation addExecutionBlock:^{
NSLog(@"task3 = >currentThread: %@", [NSThread currentThread]);
}];
[blockOperation start];
}
自定义NSOperation子类
//*********自定义继承自NSOperation的子类*********
@interface CJLOperation : NSOperation
@end
@implementation CJLOperation
- (void)main{
for (int i = 0; i < 3; i++) {
NSLog(@"NSOperation的子类:%@",[NSThread currentThread]);
}
}
@end
//*********使用*********
- (void)cjl_testCJLOperation{
//运用继承自NSOperation的子类 首先我们定义一个继承自NSOperation的类,然后重写它的main方法。
CJLOperation *operation = [[CJLOperation alloc] init];
[operation start];
}
NSOperationQueue
- 包含两种队列:
主队列
和其他队列(并发、串行)
- 加入到其他队列中默认是
并发队列
,开启多线程
/*
NSInvocationOperation和NSBlockOperation两者的区别在于:
- 前者类似target形式
- 后者类似block形式——函数式编程,业务逻辑代码可读性更高
NSOperationQueue是异步执行的,所以任务一、任务二的完成顺序不确定
*/
// 初始化添加事务
NSBlockOperation *bo = [NSBlockOperation blockOperationWithBlock:^{
NSLog(@"任务1————%@",[NSThread currentThread]);
}];
// 添加事务
[bo addExecutionBlock:^{
NSLog(@"任务2————%@",[NSThread currentThread]);
}];
// 回调监听
bo.completionBlock = ^{
NSLog(@"完成了!!!");
};
NSOperationQueue *queue = [[NSOperationQueue alloc] init];
[queue addOperation:bo];
NSLog(@"事务添加进了NSOperationQueue");
设置优先级
/*
NSOperation设置优先级只会让CPU有更高的几率调用,不是说设置高就一定全部先完成
- 不使用sleep——高优先级的任务一先于低优先级的任务二
- 使用sleep进行延时——高优先级的任务一慢于低优先级的任务二
*/
NSBlockOperation *bo1 = [NSBlockOperation blockOperationWithBlock:^{
for (int i = 0; i < 5; i++) {
//sleep(1);
NSLog(@"第一个操作 %d --- %@", i, [NSThread currentThread]);
}
}];
// 设置最高优先级
bo1.qualityOfService = NSQualityOfServiceUserInteractive;
NSBlockOperation *bo2 = [NSBlockOperation blockOperationWithBlock:^{
for (int i = 0; i < 5; i++) {
NSLog(@"第二个操作 %d --- %@", i, [NSThread currentThread]);
}
}];
// 设置最低优先级
bo2.qualityOfService = NSQualityOfServiceBackground;
NSOperationQueue *queue = [[NSOperationQueue alloc] init];
[queue addOperation:bo1];
[queue addOperation:bo2];
设置并发数
/*
在GCD中只能使用信号量来设置并发数
而NSOperation轻易就能设置并发数
通过设置maxConcurrentOperationCount来控制单次出队列去执行的任务数
*/
NSOperationQueue *queue = [[NSOperationQueue alloc] init];
queue.name = @"Felix";
queue.maxConcurrentOperationCount = 2;
for (int i = 0; i < 5; i++) {
[queue addOperationWithBlock:^{ // 一个任务
[NSThread sleepForTimeInterval:2];
NSLog(@"%d-%@",i,[NSThread currentThread]);
}];
}
添加依赖
NSOperationQueue *queue = [[NSOperationQueue alloc] init];
NSBlockOperation *bo1 = [NSBlockOperation blockOperationWithBlock:^{
[NSThread sleepForTimeInterval:0.5];
NSLog(@"请求token");
}];
NSBlockOperation *bo2 = [NSBlockOperation blockOperationWithBlock:^{
[NSThread sleepForTimeInterval:0.5];
NSLog(@"拿着token,请求数据1");
}];
NSBlockOperation *bo3 = [NSBlockOperation blockOperationWithBlock:^{
[NSThread sleepForTimeInterval:0.5];
NSLog(@"拿着数据1,请求数据2");
}];
[bo2 addDependency:bo1];
[bo3 addDependency:bo2];
[queue addOperations:@[bo1,bo2,bo3] waitUntilFinished:YES];
NSLog(@"执行完了?我要干其他事");
线程通信
NSOperationQueue *queue = [[NSOperationQueue alloc] init];
queue.name = @"Felix";
[queue addOperationWithBlock:^{
NSLog(@"请求网络%@--%@", [NSOperationQueue currentQueue], [NSThread currentThread]);
[[NSOperationQueue mainQueue] addOperationWithBlock:^{
NSLog(@"刷新UI%@--%@", [NSOperationQueue currentQueue], [NSThread currentThread]);
}];
}];