祝大家新年快乐,阖家幸福,健康快乐!
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智能40篇、Python安全20篇、其他技巧10篇。您的关注、点赞和转发就是对秀璋最大的支持,知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。
该系列文章主要讲解Python OpenCV图像处理和图像识别知识,前期主要讲解图像处理基础知识、OpenCV基础用法、常用图像绘制方法、图像几何变换等,中期讲解图像处理的各种运算,包括图像点运算、形态学处理、图像锐化、图像增强、图像平滑等,后期研究图像识别、图像分割、图像分类、图像特效处理以及图像处理相关应用。
第一部分作者介绍了图像处理基础知识,第二部分介绍了图像运算和图像增强,接下来第三部分我们将详细讲解图像识别及图像处理经典案例,该部分属于高阶图像处理知识,能进一步加深我们的理解和实践能力。在数字图像处理中,有两个经典的变换被广泛应用——傅里叶变换和霍夫变换。其中,傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪、图像增强等处理;霍夫变换主要用来辨别找出物件中的特征,用来进行特征检测、图像分析、数位影像处理等处理。本文主要讲解图像傅里叶变换和傅里叶逆变换。希望文章对您有所帮助,如果有不足之处,还请海涵。
下载地址:记得点赞喔 O(∩_∩)O
前文赏析:(尽管该部分占大量篇幅,但我舍不得删除,哈哈!)
第一部分 基础语法
第二部分 网络爬虫
第三部分 数据分析和机器学习
第四部分 Python图像处理基础
第五部分 Python图像运算和图像增强
第六部分 Python图像识别和图像高阶案例
第七部分 NLP与文本挖掘
第八部分 人工智能入门知识
第九部分 网络攻防与AI安全
第十部分 知识图谱构建实战
扩展部分 人工智能高级案例
作者新开的“娜璋AI安全之家”将专注于Python和安全技术,主要分享Web渗透、系统安全、人工智能、大数据分析、图像识别、恶意代码检测、CVE复现、威胁情报分析等文章。虽然作者是一名技术小白,但会保证每一篇文章都会很用心地撰写,希望这些基础性文章对你有所帮助,在Python和安全路上与大家一起进步。
傅里叶变换(Fourier Transform,简称FT)常用于数字信号处理,它的目的是将时间域上的信号转变为频率域上的信号。随着域的不同,对同一个事物的了解角度也随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。同时,可以从频域里发现一些原先不易察觉的特征。傅里叶定理指出“任何连续周期信号都可以表示成(或者无限逼近)一系列正弦信号的叠加。”[1]
傅里叶公式(1)如下,其中w表示频率,t表示时间,为复变函数。它将时间域的函数表示为频率域的函数f(t)的积分[2]。
傅里叶变换认为一个周期函数(信号)包含多个频率分量,任意函数(信号)f(t)可通过多个周期函数(或基函数)相加合成。从物理角度理解,傅里叶变换是以一组特殊的函数(三角函数)为正交基,对原函数进行线性变换,物理意义便是原函数在各组基函数的投影。如1图所示,它是由三条正弦曲线组合成。其函数为(2)所示[3]。
傅里叶变换可以应用于图像处理中,经过对图像进行变换得到其频谱图。从谱频图里频率高低来表征图像中灰度变化剧烈程度。图像中的边缘信号和噪声信号往往是高频信号,而图像变化频繁的图像轮廓及背景等信号往往是低频信号。这时可以有针对性的对图像进行相关操作,例如图像除噪、图像增强和锐化等。
二维图像的傅里叶变换可以用以下数学公式(3)表达,其中f是空间域(Spatial Domain))值,F是频域(Frequency Domain)值。
对上面的傅里叶变换有了大致的了解之后,下面通过Numpy和OpenCV分别讲解图像傅里叶变换的算法及操作代码。
OpenCV 中相应的函数是cv2.dft()和用Numpy输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分,并且输入图像要首先转换成 np.float32 格式。其函数原型如下所示:
注意,由于输出的频谱结果是一个复数,需要调用cv2.magnitude()函数将傅里叶变换的双通道结果转换为0到255的范围。其函数原型如下:
最终输出结果为幅值,即:
下面的代码是调用cv2.dft()进行傅里叶变换的一个简单示例。
# -*- coding: utf-8 -*-
# By: Eastmount
import numpy as np
import cv2
from matplotlib import pyplot as plt
import matplotlib
#读取图像
img = cv2.imread('lena-hd.png', 0)
#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
#将频谱低频从左上角移动至中心位置
dft_shift = np.fft.fftshift(dft)
#频谱图像双通道复数转换为0-255区间
result = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#显示图像
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title(u'(a)原始图像'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(result, cmap = 'gray')
plt.title(u'(b)傅里叶变换处理'), plt.xticks([]), plt.yticks([])
plt.show()
输出结果如图2所示,图(a)为原始“Lena”图,图(b)为转换后的频谱图像,并且保证低频位于中心位置。
在OpenCV 中,通过函数cv2.idft()实现傅里叶逆变换,其返回结果取决于原始图像的类型和大小,原始图像可以为实数或复数。其函数原型如下所示:
注意,由于输出的频谱结果是一个复数,需要调用cv2.magnitude()函数将傅里叶变换的双通道结果转换为0到255的范围。其函数原型如下:
最终输出结果为幅值,即:
下面的代码是调用cv2.idft()进行傅里叶逆变换的一个简单示例。
# -*- coding: utf-8 -*-
# By: Eastmount
import numpy as np
import cv2
from matplotlib import pyplot as plt
import matplotlib
#读取图像
img = cv2.imread('lena-hd.png', 0)
#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftshift = np.fft.fftshift(dft)
res1= 20*np.log(cv2.magnitude(dftshift[:,:,0], dftshift[:,:,1]))
#傅里叶逆变换
ishift = np.fft.ifftshift(dftshift)
iimg = cv2.idft(ishift)
res2 = cv2.magnitude(iimg[:,:,0], iimg[:,:,1])
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#显示图像
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('(a)原始图像')
plt.axis('off')
plt.subplot(132), plt.imshow(res1, 'gray'), plt.title('(b)傅里叶变换处理')
plt.axis('off')
plt.subplot(133), plt.imshow(res2, 'gray'), plt.title('(b)傅里叶变换逆处理')
plt.axis('off')
plt.show()
输出结果如图3所示,图(a)为原始“Lena”图,图(b)为傅里叶变换后的频谱图像,图©为傅里叶逆变换,频谱图像转换为原始图像的过程。
Numpy中的 FFT包提供了函数 np.fft.fft2()可以对信号进行快速傅里叶变换,其函数原型如下所示,该输出结果是一个复数数组(Complex Ndarry)[2]。
Numpy中的fft模块有很多函数,相关函数如下:
#计算一维傅里叶变换
numpy.fft.fft(a, n=None, axis=-1, norm=None)
#计算二维的傅里叶变换
numpy.fft.fft2(a, n=None, axis=-1, norm=None)
#计算n维的傅里叶变换
numpy.fft.fftn()
#计算n维实数的傅里叶变换
numpy.fft.rfftn()
#返回傅里叶变换的采样频率
numpy.fft.fftfreq()
#将FFT输出中的直流分量移动到频谱中央
numpy.fft.shift()
下面的代码是通过Numpy库实现傅里叶变换,调用np.fft.fft2()快速傅里叶变换得到频率分布,接着调用np.fft.fftshift()函数将中心位置转移至中间,最终通过Matplotlib显示效果图。
# -*- coding: utf-8 -*-
# By: Eastmount
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
#读取图像
img = cv.imread('lena-hd.png', 0)
#快速傅里叶变换算法得到频率分布
f = np.fft.fft2(img)
#默认结果中心点位置是在左上角,
#调用fftshift()函数转移到中间位置
fshift = np.fft.fftshift(f)
#fft结果是复数, 其绝对值结果是振幅
fimg = np.log(np.abs(fshift))
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#展示结果
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('(a)原始图像')
plt.axis('off')
plt.subplot(122), plt.imshow(fimg, 'gray'), plt.title('(b)傅里叶变换处理')
plt.axis('off')
plt.show()
输出结果如图4所示,图(a)为原始图像,图(b)为频率分布图谱,其中越靠近中心位置频率越低,越亮(灰度值越高)的位置代表该频率的信号振幅越大。
需要注意,傅里叶变换得到低频、高频信息,针对低频和高频处理能够实现不同的目的。同时,傅里叶过程是可逆的,图像经过傅里叶变换、逆傅里叶变换能够恢复原始图像。
下面代码呈现了原始图像在变化方面的一种表示:图像最明亮的像素放到中央,然后逐渐变暗,在边缘上的像素最暗。这样可以发现图像中亮、暗像素的百分比,即为频域中的振幅AA的强度。
# -*- coding: utf-8 -*-
# By: Eastmount
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
#读取图像
img = cv.imread('luo.png', 0)
#傅里叶变换
f = np.fft.fft2(img)
#转移像素做幅度普
fshift = np.fft.fftshift(f)
#取绝对值:将复数变化成实数取对数的目的为了将数据变化到0-255
res = np.log(np.abs(fshift))
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#展示结果
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('(a)原始图像'), plt.axis('off')
plt.subplot(122), plt.imshow(res, 'gray'), plt.title('(b)傅里叶变换处理'), plt.axis('off')
plt.show()
输出结果如图5所示,图(a)为原始图像,图(b)为频率分布图谱。
下面介绍Numpy实现傅里叶逆变换,它是傅里叶变换的逆操作,将频谱图像转换为原始图像的过程。通过傅里叶变换将转换为频谱图,并对高频(边界)和低频(细节)部分进行处理,接着需要通过傅里叶逆变换恢复为原始效果图。频域上对图像的处理会反映在逆变换图像上,从而更好地进行图像处理。
图像傅里叶变化主要使用的函数如下所示:
#实现图像逆傅里叶变换,返回一个复数数组
numpy.fft.ifft2(a, n=None, axis=-1, norm=None)
#fftshit()函数的逆函数,它将频谱图像的中心低频部分移动至左上角
numpy.fft.fftshift()
#将复数转换为0至255范围
iimg = numpy.abs(逆傅里叶变换结果)
下面的代码分别实现了傅里叶变换和傅里叶逆变换。
# -*- coding: utf-8 -*-
# By: Eastmount
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
#读取图像
img = cv.imread('luo.png', 0)
#傅里叶变换
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
res = np.log(np.abs(fshift))
#傅里叶逆变换
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#展示结果
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('(a)原始图像')
plt.axis('off')
plt.subplot(132), plt.imshow(res, 'gray'), plt.title('(b)傅里叶变换处理')
plt.axis('off')
plt.subplot(133), plt.imshow(iimg, 'gray'), plt.title('(c)傅里叶逆变换处理')
plt.axis('off')
plt.show()
输出结果如图6所示,从左至右分别为原始图像、频谱图像、逆傅里叶变换转换图像。
傅里叶变换的目的并不是为了观察图像的频率分布(至少不是最终目的),更多情况下是为了对频率进行过滤,通过修改频率以达到图像增强、图像去噪、边缘检测、特征提取、压缩加密等目的。
过滤的方法一般有三种:
所谓低通就是保留图像中的低频成分,过滤高频成分,可以把过滤器想象成一张渔网,想要低通过滤器,就是将高频区域的信号全部拉黑,而低频区域全部保留。例如,在一幅大草原的图像中,低频对应着广袤且颜色趋于一致的草原,表示图像变换缓慢的灰度分量;高频对应着草原图像中的老虎等边缘信息,表示图像变换较快的灰度分量,由于灰度尖锐过度造成[4]。
高通滤波器是指通过高频的滤波器,衰减低频而通过高频,常用于增强尖锐的细节,但会导致图像的对比度会降低。该滤波器将检测图像的某个区域,根据像素与周围像素的差值来提升像素的亮度。图7展示了“Lena”图对应的频谱图像,其中心区域为低频部分。
接着通过高通滤波器覆盖掉中心低频部分,将255两点变换为0,同时保留高频部分,其处理过程如图8所示。
其中心黑色模板生成的核心代码如下:
rows, cols = img.shape
crow,ccol = int(rows/2), int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
通过高通滤波器将提取图像的边缘轮廓,生成如图9所示图像。
完整代码如下所示:
# -*- coding: utf-8 -*-
# By: Eastmount
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
#读取图像
img = cv.imread('lena-hd.png', 0)
#傅里叶变换
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
#设置高通滤波器
rows, cols = img.shape
crow,ccol = int(rows/2), int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
#傅里叶逆变换
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#显示原始图像和高通滤波处理图像
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('(a)原始图像')
plt.axis('off')
plt.subplot(122), plt.imshow(iimg, 'gray'), plt.title('(b)结果图像')
plt.axis('off')
plt.show()
输出结果如图10所示,图(a)为原始“Lena”图,图(b)为高通滤波器提取的边缘轮廓图像。它通过傅里叶变换转换为频谱图像,再将中心的低频部分设置为0,再通过傅里叶逆变换转换为最终输出图像。
低通滤波器是指通过低频的滤波器,衰减高频而通过低频,常用于模糊图像。低通滤波器与高通滤波器相反,当一个像素与周围像素的插值小于一个特定值时,平滑该像素的亮度,常用于去燥和模糊化处理。如PS软件中的高斯模糊,就是常见的模糊滤波器之一,属于削弱高频信号的低通滤波器。
图7展示了“Lena”图对应的频谱图像,其中心区域为低频部分。如果构造低通滤波器,则将频谱图像中心低频部分保留,其他部分替换为黑色0,其处理过程如图11所示,最终得到的效果图为模糊图像。
那么,如何构造该滤波图像呢?如图12所示,滤波图像是通过低通滤波器和频谱图像形成。其中低通滤波器中心区域为白色255,其他区域为黑色0。
低通滤波器主要通过矩阵设置构造,其核心代码如下:
rows, cols = img.shape
crow,ccol = int(rows/2), int(cols/2)
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
通过低通滤波器将模糊图像的完整代码如下所示:
# -*- coding: utf-8 -*-
# By: Eastmount
import cv2
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
#读取图像
img = cv2.imread('lena-hd.png', 0)
#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
fshift = np.fft.fftshift(dft)
#设置低通滤波器
rows, cols = img.shape
crow,ccol = int(rows/2), int(cols/2) #中心位置
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
#掩膜图像和频谱图像乘积
f = fshift * mask
print(f.shape, fshift.shape, mask.shape)
#傅里叶逆变换
ishift = np.fft.ifftshift(f)
iimg = cv2.idft(ishift)
res = cv2.magnitude(iimg[:,:,0], iimg[:,:,1])
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#显示原始图像和低通滤波处理图像
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('(a)原始图像')
plt.axis('off')
plt.subplot(122), plt.imshow(res, 'gray'), plt.title('(b)结果图像')
plt.axis('off')
plt.show()
输出结果如图13所示,图(a)为原始“Lena”图,图(b)为低通滤波器模糊处理后的图像。
本章主要讲解傅里叶变换。傅里叶变换主要用来进行图像除噪、图像增强处理,通过Numpy和OpenCV两种方法分别进行叙述,并结合代码加深了读者的印象。希望读者深入了解傅里叶变换的原理知识,该算法应用非常广。
转眼就过年了,2022年简单总结:很多遗憾,很多不足,勉强算是分秒必争,只争朝夕,但愧对家人,陪伴太少,论文、科研、分享和家庭都做得不好,这一年勉强给个65分吧。最最感恩的永远是女神,回家的感觉真好,平平淡淡,温温馨馨,虽然这辈子科研、事业和职称上没有太大的追求,和大佬们的差距如鸿沟,但能做自己喜欢的事,爱自己喜欢的人,每天前进一小步(人生勿比),一家人健康幸福,足矣。提前祝大家新春快乐,阖家幸福。小珞珞是真的逗,陪伴的感觉真好,女神是真的好,爱你们喔,晚安娜继续加油!
(By:Eastmount 2023-02-06 夜于贵阳 http://blog.csdn.net/eastmount/ )
参考文献: