一个 tcp 连接能发几个 http 请求?
如果是 HTTP 1.0 版本协议,一般情况下,不支持长连接,因此在每次请求发送完毕之后,TCP 连接即会断开,因此一个 TCP 发送一个 HTTP 请求,但是有一种情况可以将一条 TCP 连接保持在活跃状态,那就是通过 Connection 和 Keep-Alive 首部,在请求头带上 Connection: Keep-Alive,并且可以通过 Keep-Alive 通用首部中指定的,用逗号分隔的选项调节 keep-alive 的行为,如果客户端和服务端都支持,那么其实也可以发送多条,不过此方式也有限制,可以关注《HTTP 权威指南》4.5.5 节对于 Keep-Alive 连接的限制和规则。
而如果是 HTTP 1.1 版本协议,支持了长连接,因此只要 TCP 连接不断开,便可以一直发送 HTTP 请求,持续不断,没有上限; 同样,如果是 HTTP 2.0 版本协议,支持多用复用,一个 TCP 连接是可以并发多个 HTTP 请求的,同样也是支持长连接,因此只要不断开 TCP 的连接,HTTP 请求数也是可以没有上限地持续发送
深拷贝浅拷贝
浅拷贝:浅拷贝通过ES6新特性Object.assign()或者通过扩展运算法...来达到浅拷贝的目的,浅拷贝修改
副本,不会影响原数据,但缺点是浅拷贝只能拷贝第一层的数据,且都是值类型数据,如果有引用型数据,修改
副本会影响原数据。
深拷贝:通过利用JSON.parse(JSON.stringify())来实现深拷贝的目的,但利用JSON拷贝也是有缺点的,
当要拷贝的数据中含有undefined/function/symbol类型是无法进行拷贝的,当然我们想项目开发中需要
深拷贝的数据一般不会含有以上三种类型,如有需要可以自己在封装一个函数来实现。
哪些操作会造成内存泄漏?
- 第一种情况是由于使用未声明的变量,而意外的创建了一个全局变量,而使这个变量一直留在内存中无法被回收。
- 第二种情况是设置了 setInterval 定时器,而忘记取消它,如果循环函数有对外部变量的引用的话,那么这个变量会被一直留在内存中,而无法被回收。
- 第三种情况是获取一个 DOM 元素的引用,而后面这个元素被删除,由于我们一直保留了对这个元素的引用,所以它也无法被回收。
- 第四种情况是不合理的使用闭包,从而导致某些变量一直被留在内存当中。
HTTP世界全览
- 互联网上绝大部分资源都使用
HTTP
协议传输; - 浏览器是 HTTP 协议里的请求方,即
User Agent
; - 服务器是 HTTP 协议里的应答方,常用的有
Apache
和Nginx
; CDN
位于浏览器和服务器之间,主要起到缓存加速的作用;- 爬虫是另一类
User Agent
,是自动访问网络资源的程序。 TCP/IP
是网络世界最常用的协议,HTTP
通常运行在TCP/IP
提供的可靠传输基础上DNS
域名是IP
地址的等价替代,需要用域名解析实现到IP
地址的映射;URI
是用来标记互联网上资源的一个名字,由“协议名 + 主机名 + 路径”构成,俗称 URL;HTTPS
相当于“HTTP+SSL/TLS+TCP/IP
”,为HTTP
套了一个安全的外壳;- 代理是
HTTP
传输过程中的“中转站”,可以实现缓存加速、负载均衡等功能
回流与重绘的概念及触发条件
(1)回流
当渲染树中部分或者全部元素的尺寸、结构或者属性发生变化时,浏览器会重新渲染部分或者全部文档的过程就称为回流。
下面这些操作会导致回流:
- 页面的首次渲染
- 浏览器的窗口大小发生变化
- 元素的内容发生变化
- 元素的尺寸或者位置发生变化
- 元素的字体大小发生变化
- 激活CSS伪类
- 查询某些属性或者调用某些方法
- 添加或者删除可见的DOM元素
在触发回流(重排)的时候,由于浏览器渲染页面是基于流式布局的,所以当触发回流时,会导致周围的DOM元素重新排列,它的影响范围有两种:
- 全局范围:从根节点开始,对整个渲染树进行重新布局
- 局部范围:对渲染树的某部分或者一个渲染对象进行重新布局
(2)重绘
当页面中某些元素的样式发生变化,但是不会影响其在文档流中的位置时,浏览器就会对元素进行重新绘制,这个过程就是重绘。
下面这些操作会导致回流:
- color、background 相关属性:background-color、background-image 等
- outline 相关属性:outline-color、outline-width 、text-decoration
- border-radius、visibility、box-shadow
注意: 当触发回流时,一定会触发重绘,但是重绘不一定会引发回流。
发布订阅模式和观察者模式
1. 发布/订阅模式
发布/订阅模式
- 订阅者
- 发布者
- 信号中心
我们假定,存在一个"信号中心",某个任务执行完成,就向信号中心"发布"(publish)一个信 号,其他任务可以向信号中心"订阅"(subscribe)这个信号,从而知道什么时候自己可以开始执 行。这就叫做"发布/订阅模式"(publish-subscribe pattern)
Vue 的自定义事件
let vm = new Vue()
vm.$on('dataChange', () => { console.log('dataChange')})
vm.$on('dataChange', () => {
console.log('dataChange1')
})
vm.$emit('dataChange')
兄弟组件通信过程
// eventBus.js
// 事件中心
let eventHub = new Vue()
// ComponentA.vue
// 发布者
addTodo: function () {
// 发布消息(事件)
eventHub.$emit('add-todo', { text: this.newTodoText })
this.newTodoText = ''
}
// ComponentB.vue
// 订阅者
created: function () {
// 订阅消息(事件)
eventHub.$on('add-todo', this.addTodo)
}
模拟 Vue 自定义事件的实现
class EventEmitter {
constructor(){
// { eventType: [ handler1, handler2 ] }
this.subs = {}
}
// 订阅通知
$on(eventType, fn) {
this.subs[eventType] = this.subs[eventType] || []
this.subs[eventType].push(fn)
}
// 发布通知
$emit(eventType) {
if(this.subs[eventType]) {
this.subs[eventType].forEach(v=>v())
}
}
}
// 测试
var bus = new EventEmitter()
// 注册事件
bus.$on('click', function () {
console.log('click')
})
bus.$on('click', function () {
console.log('click1')
})
// 触发事件
bus.$emit('click')
2. 观察者模式
观察者(订阅者) --
Watcher
update()
:当事件发生时,具体要做的事情
目标(发布者) --
Dep
subs
数组:存储所有的观察者addSub()
:添加观察者notify()
:当事件发生,调用所有观察者的update()
方法
- 没有事件中心
// 目标(发布者)
// Dependency
class Dep {
constructor () {
// 存储所有的观察者
this.subs = []
}
// 添加观察者
addSub (sub) {
if (sub && sub.update) {
this.subs.push(sub)
}
}
// 通知所有观察者
notify () {
this.subs.forEach(sub => sub.update())
}
}
// 观察者(订阅者)
class Watcher {
update () {
console.log('update')
}
}
// 测试
let dep = new Dep()
let watcher = new Watcher()
dep.addSub(watcher)
dep.notify()
3. 总结
- 观察者模式是由具体目标调度,比如当事件触发,
Dep
就会去调用观察者的方法,所以观察者模 式的订阅者与发布者之间是存在依赖的 - 发布/订阅模式由统一调度中心调用,因此发布者和订阅者不需要知道对方的存在
参考 前端进阶面试题详细解答
Cookie、LocalStorage、SessionStorage区别
浏览器端常用的存储技术是 cookie 、localStorage 和 sessionStorage。
- cookie: 其实最开始是服务器端用于记录用户状态的一种方式,由服务器设置,在客户端存储,然后每次发起同源请求时,发送给服务器端。cookie 最多能存储 4 k 数据,它的生存时间由 expires 属性指定,并且 cookie 只能被同源的页面访问共享。
- sessionStorage: html5 提供的一种浏览器本地存储的方法,它借鉴了服务器端 session 的概念,代表的是一次会话中所保存的数据。它一般能够存储 5M 或者更大的数据,它在当前窗口关闭后就失效了,并且 sessionStorage 只能被同一个窗口的同源页面所访问共享。
- localStorage: html5 提供的一种浏览器本地存储的方法,它一般也能够存储 5M 或者更大的数据。它和 sessionStorage 不同的是,除非手动删除它,否则它不会失效,并且 localStorage 也只能被同源页面所访问共享。
上面几种方式都是存储少量数据的时候的存储方式,当需要在本地存储大量数据的时候,我们可以使用浏览器的 indexDB 这是浏览器提供的一种本地的数据库存储机制。它不是关系型数据库,它内部采用对象仓库的形式存储数据,它更接近 NoSQL 数据库。
什么是 CSRF 攻击?
(1)概念
CSRF 攻击指的是跨站请求伪造攻击,攻击者诱导用户进入一个第三方网站,然后该网站向被攻击网站发送跨站请求。如果用户在被攻击网站中保存了登录状态,那么攻击者就可以利用这个登录状态,绕过后台的用户验证,冒充用户向服务器执行一些操作。
CSRF 攻击的本质是利用 cookie 会在同源请求中携带发送给服务器的特点,以此来实现用户的冒充。
(2)攻击类型
常见的 CSRF 攻击有三种:
- GET 类型的 CSRF 攻击,比如在网站中的一个 img 标签里构建一个请求,当用户打开这个网站的时候就会自动发起提交。
- POST 类型的 CSRF 攻击,比如构建一个表单,然后隐藏它,当用户进入页面时,自动提交这个表单。
- 链接类型的 CSRF 攻击,比如在 a 标签的 href 属性里构建一个请求,然后诱导用户去点击。
冒泡排序--时间复杂度 n^2
题目描述:实现一个冒泡排序
实现代码如下:
function bubbleSort(arr) {
// 缓存数组长度
const len = arr.length;
// 外层循环用于控制从头到尾的比较+交换到底有多少轮
for (let i = 0; i < len; i++) {
// 内层循环用于完成每一轮遍历过程中的重复比较+交换
for (let j = 0; j < len - 1; j++) {
// 若相邻元素前面的数比后面的大
if (arr[j] > arr[j + 1]) {
// 交换两者
[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];
}
}
}
// 返回数组
return arr;
}
// console.log(bubbleSort([3, 6, 2, 4, 1]));
浏览器渲染优化
(1)针对JavaScript: JavaScript既会阻塞HTML的解析,也会阻塞CSS的解析。因此我们可以对JavaScript的加载方式进行改变,来进行优化:
(1)尽量将JavaScript文件放在body的最后
(2) body中间尽量不要写标签
(3)标签的引入资源方式有三种,有一种就是我们常用的直接引入,还有两种就是使用 async 属性和 defer 属性来异步引入,两者都是去异步加载外部的JS文件,不会阻塞DOM的解析(尽量使用异步加载)。三者的区别如下:
- script 立即停止页面渲染去加载资源文件,当资源加载完毕后立即执行js代码,js代码执行完毕后继续渲染页面;
- async 是在下载完成之后,立即异步加载,加载好后立即执行,多个带async属性的标签,不能保证加载的顺序;
- defer 是在下载完成之后,立即异步加载。加载好后,如果 DOM 树还没构建好,则先等 DOM 树解析好再执行;如果DOM树已经准备好,则立即执行。多个带defer属性的标签,按照顺序执行。
(2)针对CSS:使用CSS有三种方式:使用link、@import、内联样式,其中link和@import都是导入外部样式。它们之间的区别:
- link:浏览器会派发一个新等线程(HTTP线程)去加载资源文件,与此同时GUI渲染线程会继续向下渲染代码
- @import:GUI渲染线程会暂时停止渲染,去服务器加载资源文件,资源文件没有返回之前不会继续渲染(阻碍浏览器渲染)
- style:GUI直接渲染
外部样式如果长时间没有加载完毕,浏览器为了用户体验,会使用浏览器会默认样式,确保首次渲染的速度。所以CSS一般写在headr中,让浏览器尽快发送请求去获取css样式。
所以,在开发过程中,导入外部样式使用link,而不用@import。如果css少,尽可能采用内嵌样式,直接写在style标签中。
(3)针对DOM树、CSSOM树: 可以通过以下几种方式来减少渲染的时间:
- HTML文件的代码层级尽量不要太深
- 使用语义化的标签,来避免不标准语义化的特殊处理
- 减少CSSD代码的层级,因为选择器是从左向右进行解析的
(4)减少回流与重绘:
- 操作DOM时,尽量在低层级的DOM节点进行操作
- 不要使用
table
布局, 一个小的改动可能会使整个table
进行重新布局 - 使用CSS的表达式
- 不要频繁操作元素的样式,对于静态页面,可以修改类名,而不是样式。
- 使用absolute或者fixed,使元素脱离文档流,这样他们发生变化就不会影响其他元素
- 避免频繁操作DOM,可以创建一个文档片段
documentFragment
,在它上面应用所有DOM操作,最后再把它添加到文档中 - 将元素先设置
display: none
,操作结束后再把它显示出来。因为在display属性为none的元素上进行的DOM操作不会引发回流和重绘。 - 将DOM的多个读操作(或者写操作)放在一起,而不是读写操作穿插着写。这得益于浏览器的渲染队列机制。
浏览器针对页面的回流与重绘,进行了自身的优化——渲染队列
浏览器会将所有的回流、重绘的操作放在一个队列中,当队列中的操作到了一定的数量或者到了一定的时间间隔,浏览器就会对队列进行批处理。这样就会让多次的回流、重绘变成一次回流重绘。
将多个读操作(或者写操作)放在一起,就会等所有的读操作进入队列之后执行,这样,原本应该是触发多次回流,变成了只触发一次回流。
节流与防抖
- 函数防抖 是指在事件被触发 n 秒后再执行回调,如果在这 n 秒内事件又被触发,则重新计时。这可以使用在一些点击请求的事件上,避免因为用户的多次点击向后端发送多次请求。
- 函数节流 是指规定一个单位时间,在这个单位时间内,只能有一次触发事件的回调函数执行,如果在同一个单位时间内某事件被触发多次,只有一次能生效。节流可以使用在 scroll 函数的事件监听上,通过事件节流来降低事件调用的频率。
// 函数防抖的实现
function debounce(fn, wait) {
var timer = null;
return function() {
var context = this,
args = arguments;
// 如果此时存在定时器的话,则取消之前的定时器重新记时
if (timer) {
clearTimeout(timer);
timer = null;
}
// 设置定时器,使事件间隔指定事件后执行
timer = setTimeout(() => {
fn.apply(context, args);
}, wait);
};
}
// 函数节流的实现;
function throttle(fn, delay) {
var preTime = Date.now();
return function() {
var context = this,
args = arguments,
nowTime = Date.now();
// 如果两次时间间隔超过了指定时间,则执行函数。
if (nowTime - preTime >= delay) {
preTime = Date.now();
return fn.apply(context, args);
}
};
}
选择排序--时间复杂度 n^2
题目描述:实现一个选择排序
实现代码如下:
function selectSort(arr) {
// 缓存数组长度
const len = arr.length;
// 定义 minIndex,缓存当前区间最小值的索引,注意是索引
let minIndex;
// i 是当前排序区间的起点
for (let i = 0; i < len - 1; i++) {
// 初始化 minIndex 为当前区间第一个元素
minIndex = i;
// i、j分别定义当前区间的上下界,i是左边界,j是右边界
for (let j = i; j < len; j++) {
// 若 j 处的数据项比当前最小值还要小,则更新最小值索引为 j
if (arr[j] < arr[minIndex]) {
minIndex = j;
}
}
// 如果 minIndex 对应元素不是目前的头部元素,则交换两者
if (minIndex !== i) {
[arr[i], arr[minIndex]] = [arr[minIndex], arr[i]];
}
}
return arr;
}
// console.log(quickSort([3, 6, 2, 4, 1]));
代码输出结果
Promise.resolve().then(() => {
return new Error('error!!!')
}).then(res => {
console.log("then: ", res)
}).catch(err => {
console.log("catch: ", err)
})
输出结果如下:
"then: " "Error: error!!!"
返回任意一个非 promise 的值都会被包裹成 promise 对象,因此这里的return new Error('error!!!')
也被包裹成了return Promise.resolve(new Error('error!!!'))
,因此它会被then捕获而不是catch。
深拷贝
实现一:不考虑 Symbol
function deepClone(obj) {
if(!isObject(obj)) return obj;
let newObj = Array.isArray(obj) ? [] : {};
// for...in 只会遍历对象自身的和继承的可枚举的属性(不含 Symbol 属性)
for(let key in obj) {
// obj.hasOwnProperty() 方法只考虑对象自身的属性
if(obj.hasOwnProperty(key)) {
newObj[key] = isObject(obj[key]) ? deepClone(obj[key]) : obj[key];
}
}
return newObj;
}
实现二:考虑 Symbol
// hash 作为一个检查器,避免对象深拷贝中出现环引用,导致爆栈
function deepClone(obj, hash = new WeakMap()) {
if(!isObject(obj)) return obj;
// 检查是有存在相同的对象在之前拷贝过,有则返回之前拷贝后存于hash中的对象
if(hash.has(obj)) return hash.get(obj);
let newObj = Array.isArray(obj) ? [] : {};
// 备份存在hash中,newObj目前是空对象、数组。后面会对属性进行追加,这里存的值是对象的栈
hash.set(obj, newObj);
// Reflect.ownKeys返回一个数组,包含对象自身的(不含继承的)所有键名,不管键名是 Symbol 或字符串,也不管是否可枚举。
Reflect.ownKeys(obj).forEach(key => {
// 属性值如果是对象,则进行递归深拷贝,否则直接拷贝
newObj[key] = isObject(obj[key]) ? deepClone(obj[key], hash) : obj[key];
});
return newObj;
}
常⽤的meta标签有哪些
meta
标签由 name
和 content
属性定义,用来描述网页文档的属性,比如网页的作者,网页描述,关键词等,除了HTTP标准固定了一些name
作为大家使用的共识,开发者还可以自定义name。
常用的meta标签:
(1)charset
,用来描述HTML文档的编码类型:
(2) keywords
,页面关键词:
(3)description
,页面描述:
(4)refresh
,页面重定向和刷新:
(5)viewport
,适配移动端,可以控制视口的大小和比例:
其中,content
参数有以下几种:
width viewport
:宽度(数值/device-width)height viewport
:高度(数值/device-height)initial-scale
:初始缩放比例maximum-scale
:最大缩放比例minimum-scale
:最小缩放比例user-scalable
:是否允许用户缩放(yes/no)
(6)搜索引擎索引方式:
其中,content
参数有以下几种:
all
:文件将被检索,且页面上的链接可以被查询;none
:文件将不被检索,且页面上的链接不可以被查询;index
:文件将被检索;follow
:页面上的链接可以被查询;noindex
:文件将不被检索;nofollow
:页面上的链接不可以被查询。
浏览器的主要组成部分
- ⽤户界⾯ 包括地址栏、前进/后退按钮、书签菜单等。除了浏览器主窗⼝显示的您请求的⻚⾯外,其他显示的各个部分都属于⽤户界⾯。
- 浏览器引擎 在⽤户界⾯和呈现引擎之间传送指令。
- 呈现引擎 负责显示请求的内容。如果请求的内容是 HTML,它就负责解析 HTML 和 CSS 内容,并将解析后的内容显示在屏幕上。
- ⽹络 ⽤于⽹络调⽤,⽐如 HTTP 请求。其接⼝与平台⽆关,并为所有平台提供底层实现。
- ⽤户界⾯后端 ⽤于绘制基本的窗⼝⼩部件,⽐如组合框和窗⼝。其公开了与平台⽆关的通⽤接⼝,⽽在底层使⽤操作系统的⽤户界⾯⽅法。
- JavaScript 解释器。⽤于解析和执⾏ JavaScript 代码。
- 数据存储 这是持久层。浏览器需要在硬盘上保存各种数据,例如 Cookie。新的 HTML 规范 (HTML5) 定义了“⽹络数据库”,这是⼀个完整(但是轻便)的浏览器内数据库。
值得注意的是,和⼤多数浏览器不同,Chrome 浏览器的每个标签⻚都分别对应⼀个呈现引擎实例。每个标签⻚都是⼀个独⽴的进程。
左边定宽,右边自适应方案
float + margin,float + calc
/* 方案1 */
.left {
width: 120px;
float: left;
}
.right {
margin-left: 120px;
}
/* 方案2 */
.left {
width: 120px;
float: left;
}
.right {
width: calc(100% - 120px);
float: left;
}
HTTPS是如何保证安全的?
先理解两个概念:
- 对称加密:即通信的双⽅都使⽤同⼀个秘钥进⾏加解密,对称加密虽然很简单性能也好,但是⽆法解决⾸次把秘钥发给对⽅的问题,很容易被⿊客拦截秘钥。
- ⾮对称加密:
- 私钥 + 公钥= 密钥对
- 即⽤私钥加密的数据,只有对应的公钥才能解密,⽤公钥加密的数据,只有对应的私钥才能解密
- 因为通信双⽅的⼿⾥都有⼀套⾃⼰的密钥对,通信之前双⽅会先把⾃⼰的公钥都先发给对⽅
- 然后对⽅再拿着这个公钥来加密数据响应给对⽅,等到到了对⽅那⾥,对⽅再⽤⾃⼰的私钥进⾏解密
⾮对称加密虽然安全性更⾼,但是带来的问题就是速度很慢,影响性能。
解决⽅案:
结合两种加密⽅式,将对称加密的密钥使⽤⾮对称加密的公钥进⾏加密,然后发送出去,接收⽅使⽤私钥进⾏解密得到对称加密的密钥,然后双⽅可以使⽤对称加密来进⾏沟通。
此时⼜带来⼀个问题,中间⼈问题:
如果此时在客户端和服务器之间存在⼀个中间⼈,这个中间⼈只需要把原本双⽅通信互发的公钥,换成⾃⼰的公钥,这样中间⼈就可以轻松解密通信双⽅所发送的所有数据。
所以这个时候需要⼀个安全的第三⽅颁发证书(CA),证明身份的身份,防⽌被中间⼈攻击。 证书中包括:签发者、证书⽤途、使⽤者公钥、使⽤者私钥、使⽤者的HASH算法、证书到期时间等。
但是问题来了,如果中间⼈篡改了证书,那么身份证明是不是就⽆效了?这个证明就⽩买了,这个时候需要⼀个新的技术,数字签名。
数字签名就是⽤CA⾃带的HASH算法对证书的内容进⾏HASH得到⼀个摘要,再⽤CA的私钥加密,最终组成数字签名。当别⼈把他的证书发过来的时候,我再⽤同样的Hash算法,再次⽣成消息摘要,然后⽤CA的公钥对数字签名解密,得到CA创建的消息摘要,两者⼀⽐,就知道中间有没有被⼈篡改了。这个时候就能最⼤程度保证通信的安全了。
TCP 和 UDP的概念及特点
TCP 和 UDP都是传输层协议,他们都属于TCP/IP协议族:
(1)UDP
UDP的全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,在传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。
它的特点如下:
1)面向无连接
首先 UDP 是不需要和 TCP一样在发送数据前进行三次握手建立连接的,想发数据就可以开始发送了。并且也只是数据报文的搬运工,不会对数据报文进行任何拆分和拼接操作。
具体来说就是:
- 在发送端,应用层将数据传递给传输层的 UDP 协议,UDP 只会给数据增加一个 UDP 头标识下是 UDP 协议,然后就传递给网络层了
- 在接收端,网络层将数据传递给传输层,UDP 只去除 IP 报文头就传递给应用层,不会任何拼接操作
2)有单播,多播,广播的功能
UDP 不止支持一对一的传输方式,同样支持一对多,多对多,多对一的方式,也就是说 UDP 提供了单播,多播,广播的功能。
3)面向报文
发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付IP层。UDP对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。因此,应用程序必须选择合适大小的报文
4)不可靠性
首先不可靠性体现在无连接上,通信都不需要建立连接,想发就发,这样的情况肯定不可靠。
并且收到什么数据就传递什么数据,并且也不会备份数据,发送数据也不会关心对方是否已经正确接收到数据了。
再者网络环境时好时坏,但是 UDP 因为没有拥塞控制,一直会以恒定的速度发送数据。即使网络条件不好,也不会对发送速率进行调整。这样实现的弊端就是在网络条件不好的情况下可能会导致丢包,但是优点也很明显,在某些实时性要求高的场景(比如电话会议)就需要使用 UDP 而不是 TCP。
5)头部开销小,传输数据报文时是很高效的。
UDP 头部包含了以下几个数据:
- 两个十六位的端口号,分别为源端口(可选字段)和目标端口
- 整个数据报文的长度
- 整个数据报文的检验和(IPv4 可选字段),该字段用于发现头部信息和数据中的错误
因此 UDP 的头部开销小,只有8字节,相比 TCP 的至少20字节要少得多,在传输数据报文时是很高效的。
(2)TCP TCP的全称是传输控制协议是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP 是面向连接的、可靠的流协议(流就是指不间断的数据结构)。
它有以下几个特点:
1)面向连接
面向连接,是指发送数据之前必须在两端建立连接。建立连接的方法是“三次握手”,这样能建立可靠的连接。建立连接,是为数据的可靠传输打下了基础。
2)仅支持单播传输
每条TCP传输连接只能有两个端点,只能进行点对点的数据传输,不支持多播和广播传输方式。
3)面向字节流
TCP不像UDP一样那样一个个报文独立地传输,而是在不保留报文边界的情况下以字节流方式进行传输。
4)可靠传输
对于可靠传输,判断丢包、误码靠的是TCP的段编号以及确认号。TCP为了保证报文传输的可靠,就给每个包一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。
5)提供拥塞控制
当网络出现拥塞的时候,TCP能够减小向网络注入数据的速率和数量,缓解拥塞。
6)提供全双工通信
TCP允许通信双方的应用程序在任何时候都能发送数据,因为TCP连接的两端都设有缓存,用来临时存放双向通信的数据。当然,TCP可以立即发送一个数据段,也可以缓存一段时间以便一次发送更多的数据段(最大的数据段大小取决于MSS)
图片懒加载
与普通的图片懒加载不同,如下这个多做了 2 个精心处理:
- 图片全部加载完成后移除事件监听;
- 加载完的图片,从 imgList 移除;
let imgList = [...document.querySelectorAll('img')]
let length = imgList.length
// 修正错误,需要加上自执行
- const imgLazyLoad = function() {
+ const imgLazyLoad = (function() {
let count = 0
return function() {
let deleteIndexList = []
imgList.forEach((img, index) => {
let rect = img.getBoundingClientRect()
if (rect.top < window.innerHeight) {
img.src = img.dataset.src
deleteIndexList.push(index)
count++
if (count === length) {
document.removeEventListener('scroll', imgLazyLoad)
}
}
})
imgList = imgList.filter((img, index) => !deleteIndexList.includes(index))
}
- }
+ })()
// 这里最好加上防抖处理
document.addEventListener('scroll', imgLazyLoad)