[TOC]
1. 搭建hive
1.1 上传hive安装包
- 上传apache-hive-1.2.1-bin.tar.gz 压缩包
- 解压
- 在conf下面新建一个 hive-site.xml 文件
hive-site.xml
javax.jdo.option.ConnectionURL
jdbc:mysql://192.169.1.221:3306/hive?createDatabaseIfNotExist=true
JDBC connect string for a JDBC metastore
javax.jdo.option.ConnectionDriverName
com.mysql.jdbc.Driver
Driver class name for a JDBC metastore
javax.jdo.option.ConnectionUserName
root
username to use against metastore database
javax.jdo.option.ConnectionPassword
root
password to use against metastore database
- 上传mysql驱动jar包 到lib下
- 在bin 中 hive即可启动
1.2 hive基本思想
Hive是基于Hadoop的一个数据仓库工具(离线),可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。
1.3 为什么使用Hive
- 直接使用hadoop所面临的问题
人员学习成本太高
项目周期要求太短
MapReduce实现复杂查询逻辑开发难度太大 - 为什么要使用Hive
操作接口采用类SQL语法,提供快速开发的能力。
避免了去写MapReduce,减少开发人员的学习成本。
功能扩展很方便。
1.4 Hive特点
- 可扩展
Hive可以自由的扩展集群的规模,一般情况下不需要重启服务。 - 延展性
Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。 - 容错
良好的容错性,节点出现问题SQL仍可完成执行。
2 基本使用
2.1 优化使用
- 让提示符显示当前库:
hive> set hive.cli.print.current.db=true;
2、显示查询结果时显示字段名称:
hive>set hive.cli.print.header=true;
但是这样设置只对当前会话有效,重启hive会话后就失效
解决办法:
在linux的当前用户目录中,编辑一个.hiverc文件
将参数写入其中:
vi .hiverc
set hive.cli.print.header=true;
set hive.cli.print.current.db=true;
2.2 将hive 配置进系统变量
vi /etc/profile
export HIVE_HOME=/root/apps/hive/apache-hive-1.2.1-bin
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HIVE_HOME/bin
source /etc/profile
2.3 启动hive服务使用
启动hive的服务:
bin/hiveserver2 -hiveconf hive.root.logger=DEBUG,console
上述启动,会将这个服务启动在前台,如果要启动在后台,则命令如下:
nohup bin/hiveserver2 1>/dev/null 2>&1 &
启动成功后,可以在别的节点上用beeline去连接
- 方式(1)
bin/beeline
回车,进入beeline的命令界面
输入命令连接hiveserver2
beeline> !connect jdbc:hive2//hadoop01:10000
(hadoop01是hiveserver2所启动的那台主机名,端口默认是10000)
- 方式(2)
启动时直接连接:
bin/beeline -u jdbc:hive2://vm03:10000 -n root
接下来就可以做正常sql查询了
2.4 脚本化运行
大量的hive查询任务,如果用交互式shell来进行输入的话,显然效率及其低下,因此,生产中更多的是使用脚本化运行机制:
该机制的核心点是:hive可以用一次性命令的方式来执行给定的hql语句
hive -e "insert into table t_dest select * from t_src;"
然后,进一步,可以将上述命令写入shell脚本中,以便于脚本化运行hive任务,并控制、调度众多hive任务,示例如下:
vi x.sh
#!/bin/bash
hive -e "select * from db_order.t_order"
hive -e "select * from default.t_user"
hql="create table default.t_bash as select * from db_order.t_order"
hive -e "$hql"
如果要执行的hql语句特别复杂,那么,可以把hql语句写入一个文件:
vi x.hql
select * from db_order.t_order;
select count(1) from db_order.t_user;
然后,用
hive -f /root/x.hql
来执行
3 hive建库建表与数据导入
3.1 库
3.1.1 建库
hive中有一个默认的库:
库名: default
库目录:hdfs://hdp20-01:9000/user/hive/warehouse
新建库:
create database db_order;
库建好后,在hdfs中会生成一个库目录:
user/hive/warehouse/db_order.db
3.2 表
3.2.1 基本建表语句
use db_order;//进入db_order库
create table t_order(id string,create_time string,amount float,uid string);
表建好后,会在所属的库目录中生成一个表目录
/user/hive/warehouse/db_order.db/t_order
只是,这样建表的话,hive会认为表数据文件中的字段分隔符为 ^A(vim 中输入^A 为Alt+a)
正确的建表语句为:
create table t_order(id string,create_time string,amount float,uid string)
row format delimited
fields terminated by ',';
这样就指定了表数据文件中的字段分隔符为 ","
3.2.2 删除表
drop table t_order;
删除表的效果是:
- hive会从元数据库中清除关于这个表的信息;
- hive还会从hdfs中删除这个表的表目录;
3.2.3 修改表定义
仅修改Hive元数据,不会触动表中的数据,用户需要确定实际的数据布局符合元数据的定义。
3.2.3.1 修改表名:
==alter table== name ==rename to== new_name
3.2.3.2 修改分区名:
alter table t_partition partition(department='xiangsheng',sex='male',howold=20) rename to partition(department='1',sex='1',howold=20);
3.2.3.1 添加分区:
alter table t_partition add partition (department='2',sex='0',howold=40);
3.2.3.1 删除分区:
alter table t_partition drop partition (department='2',sex='2',howold=24);
3.2.3.1 修改表的文件格式定义:
ALTER TABLE table_name [PARTITION partitionSpec] SET FILEFORMAT file_format
alter table t_partition partition(department='2',sex='0',howold=40 ) set fileformat sequencefile;
3.2.3.1 修改列名定义:
ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENTcol_comment] [FIRST|(AFTER column_name)]
alter table t_user change price jiage float first;
3.2.3.1 增加/替换列:
ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type[COMMENT col_comment], ...)
alter table t_user add columns (sex string,addr string);
alter table t_user replace columns (id string,age int,price float);
3.3 内部表与外部表
内部表(MANAGED_TABLE):
表目录按照hive的规范来部署,位于hive的仓库目录/user/hive/warehouse中
外部表(EXTERNAL_TABLE):
表目录由建表用户自己指定
create external table t_access(ip string,url string,access_time string)
row format delimited
fields terminated by ','
location '/access/log';
外部表和内部表的特性差别:
- 内部表的目录在hive的仓库目录中 VS 外部表的目录由用户指定
- drop一个内部表时:hive会清除相关元数据,并删除表数据目录
- drop一个外部表时:hive只会清除相关元数据;
一个hive的数据仓库,最底层的表,一定是来自于外部系统,为了不影响外部系统的工作逻辑,在hive中可建external表来映射这些外部系统产生的数据目录;
然后,后续的etl操作,产生的各种表建议用managed_table
3.4 分区表
分区表的实质是:在表目录中为数据文件创建分区子目录,以便于在查询时,MR程序可以针对分区子目录中的数据进行处理,缩减读取数据的范围。
比如,网站每天产生的浏览记录,浏览记录应该建一个表来存放,但是,有时候,我们可能只需要对某一天的浏览记录进行分析
这时,就可以将这个表建为分区表,每天的数据导入其中的一个分区;
当然,每日的分区目录,应该有一个目录名(分区字段)
demo1:
1. 创建带分区的表
create table t_access(ip string,url string,access_time string)
partitioned by(dt string)
row format delimited
fields terminated by ',';
注意:分区字段不能是表定义中的已存在字段
2. 向分区中导入数据
load data local inpath '/root/access.log.2017-08-04.log' into table t_access partition(dt='20170804');
load data local inpath '/root/access.log.2017-08-05.log' into table t_access partition(dt='20170805');
3. 针对分区数据进行查询
a. 统计8月4号的总PV:
select count(*) from t_access where dt='20170804';
实质:就是将分区字段当成表字段来用,就可以使用where子句指定分区了
b、统计表中所有数据总的PV:
select count(*) from t_access;
实质:不指定分区条件即可
demo2:
多个分区字段示例
建表:
create table t_partition(id int,name string,age int)
partitioned by(department string,sex string,howold int)
row format delimited fields terminated by ',';
导数据:
load data local inpath '/root/p1.dat' into table t_partition partition(department='xiangsheng',sex='male',howold=20);
3.5 CTAS建表语法
1.可以通过已存在表来建表:
create table t_user_2 like t_user;
//新建的t_user_2表结构定义与源表t_user一致,但是没有数据
2.在建表的同时插入数据
create table t_access_user
as
select ip,url from t_access;
t_access_user会根据select查询的字段来建表,同时将查询的结果插入新表中
3.6 数据导入导出
3.6.1 将数据文件导入hive的表
方式1:导入数据的一种方式:
手动用hdfs命令,将文件放入表目录;方式2:在hive的交互式shell中用hive命令来导入本地数据到表目录
hive>load data local inpath '/root/order.data.2' into table t_order;
- 方式3:用hive命令导入hdfs中的数据文件到表目录
hive>load data inpath '/access.log.2017-08-06.log' into table t_access partition(dt='20170806');
==注意:导本地文件和导HDFS文件的区别:
本地文件导入表:复制
hdfs文件导入表:移动==
3.6.1 将hive表中的数据导出到指定路径的文件
- 将hive表中的数据导入HDFS的文件
insert overwrite directory '/root/access-data'
row format delimited fields terminated by ','
select * from t_access;
- 将hive表中的数据导入本地磁盘文件
insert overwrite local directory '/root/access-data'
row format delimited fields terminated by ','
select * from t_access limit 100000;
3.6.2 hive文件格式
HIVE支持很多种文件格式:
SEQUENCE FILE | TEXT FILE | PARQUET FILE | RC FILE
create table t_pq(movie string,rate int) stored as textfile;
create table t_pq(movie string,rate int) stored as sequencefile;
create table t_pq(movie string,rate int) stored as parquetfile;
demo:
先建一个存储文本文件的表
create table t_access_text(ip string,url string,access_time string)
row format delimited fields terminated by ','
stored as textfile;
导入文本数据到表中:
load data local inpath '/root/access-data/000000_0' into table t_access_text;
建一个存储sequence file文件的表:
create table t_access_seq(ip string,url string,access_time string)
stored as sequencefile;
从文本表中查询数据插入sequencefile表中,生成数据文件就是sequencefile格式的了:
insert into t_access_seq
select * from t_access_text;
建一个存储parquet file文件的表:
create table t_access_parq(ip string,url string,access_time string)
stored as parquetfile;
3.7 数据类型
3.7.1 数字类型
TINYINT (1-byte signed integer, from -128 to 127)
SMALLINT (2-byte signed integer, from -32,768 to 32,767)
INT/INTEGER (4-byte signed integer, from -2,147,483,648 to 2,147,483,647)
BIGINT (8-byte signed integer, from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
FLOAT (4-byte single precision floating point number)
DOUBLE (8-byte double precision floating point number)
demo:
create table t_test(a string ,b int,c bigint,d float,e double,f tinyint,g smallint)
3.7.2 日期时间类型
TIMESTAMP (Note: Only available starting with Hive 0.8.0) 时间戳
DATE (Note: Only available starting with Hive 0.12.0)
demo:
假如有以下数据文件:
1,zhangsan,1985-06-30
2,lisi,1986-07-10
3,wangwu,1985-08-09
那么,就可以建一个表来对数据进行映射
create table t_customer(id int,name string,birthday date)
row format delimited
fields terminated by ',';
然后导入数据
load data local inpath '/root/customer.dat' into table t_customer;
然后,就可以正确查询
3.7.3 字符串类型
STRING
VARCHAR (Note: Only available starting with Hive 0.12.0)
CHAR (Note: Only available starting with Hive 0.13.0)
3.7.4 混杂类型
BOOLEAN
BINARY (Note: Only available starting with Hive 0.8.0)
3.7.5 复合类型
3.7.5.1 array数组类型
arrays: ARRAY (Note: negative values and non-constant expressions are allowed as of Hive 0.14.)
示例:array类型的应用
假如有如下数据需要用hive的表去映射:
流浪地球,屈楚萧:吴京:李光洁:吴孟达:赵今麦,2019-02-05
飞驰人生,沈腾:黄景瑜:尹正:张本煜:尹昉,2019-02-05
疯狂的外星人,黄渤:沈腾:汤姆·派福瑞:马修·莫里森:徐峥,2019-02-05
设想:如果主演信息用一个数组来映射比较方便
建表:
create table t_movie(moive_name string,actors array,first_show date)
row format delimited fields terminated by ','
collection items terminated by ':';
导入数据:
load data local inpath '/root/movie.dat' into table t_movie;
查询:
select * from t_movie;
select moive_name,actors[0] from t_movie;
select moive_name,actors from t_movie where array_contains(actors,'吴刚');//array_contains(actors,'吴刚');是否存在
select moive_name,size(actors) from t_movie;
3.7.5.2 map类型
maps: MAP (Note: negative values and non-constant expressions are allowed as of Hive 0.14.)
1) 假如有以下数据:
1,zhangsan,father:xiaoming#mother:xiaohuang#brother:xiaoxu,28
2,lisi,father:mayun#mother:huangyi#brother:guanyu,22
3,wangwu,father:wangjianlin#mother:ruhua#sister:jingtian,29
4,mayun,father:mayongzhen#mother:angelababy,26
可以用一个map类型来对上述数据中的家庭成员进行描述
2) 建表语句:
create table t_person(id int,name string,family_members map,age int)
row format delimited fields terminated by ','
collection items terminated by '#'
map keys terminated by ':';
3) 查询
select * from t_person;
## 取map字段的指定key的值
select id,name,family_members['father'] as father from t_person;
## 取map字段的所有key
select id,name,map_keys(family_members) as relation from t_person;
## 取map字段的所有value
select id,name,map_values(family_members) from t_person;
select id,name,map_values(family_members)[0] from t_person;
## 综合:查询有brother的用户信息
select
id,name,father
from (
select
id,name,family_members['brother'] as father
from
t_person) tmp
where
father
is not null;
或
select
id,name,age
from
t_family
where
array_contains(map_keys(family_members),'brother');
3.7.5.3 struct类型
structs: STRUCT
1) 假如有如下数据:
1,zhangsan,18:male:beijing
2,lisi,28:female:shanghai
其中的用户信息包含:年龄:整数,性别:字符串,地址:字符串
设想用一个字段来描述整个用户信息,可以采用struct
2) 建表:
create table t_person_struct(id int,name string,info struct)
row format delimited fields terminated by ','
collection items terminated by ':';
3) 查询
select * from t_person_struct;
select id,name,info.age from t_person_struct;
3.7 join关联查询示例
数据:
+------------+------------+--+
| t_a.name1 | t_a.name2 |
+------------+------------+--+
| a | 1 |
| b | 2 |
| c | 3 |
| d | 4 |
+------------+------------+--+
+------------+------------+--+
| t_b.name1 | t_b.name2 |
+------------+------------+--+
| a | xx |
| b | yy |
| d | zz |
| e | pp |
+------------+------------+--+
3.7.1 inner join(join)
sql:
select
a.name1 aname1,
a.name2 aname2,
b.name1 aname1,
b.name2 aname2
from
t_a a inner join
t_b b on
a.name1 = b.name1;
结果:
+---------+---------+---------+---------+--+
| aname1 | aname2 | aname1 | aname2 |
+---------+---------+---------+---------+--+
| a | 1 | a | xx |
| b | 2 | b | yy |
| d | 4 | d | zz |
+---------+---------+---------+---------+--+
3.7.2 left outer join(left join)
sql:
select
a.name1 aname1,
a.name2 aname2,
b.name1 aname1,
b.name2 aname2
from
t_a a left outer join
t_b b on
a.name1 = b.name1;
结果:
+---------+---------+---------+---------+--+
| aname1 | aname2 | aname1 | aname2 |
+---------+---------+---------+---------+--+
| a | 1 | a | xx |
| b | 2 | b | yy |
| c | 3 | NULL | NULL |
| d | 4 | d | zz |
+---------+---------+---------+---------+--+
3.7.3 right outer join(right join)
sql:
select
a.name1 aname1,
a.name2 aname2,
b.name1 aname1,
b.name2 aname2
from
t_a a right outer join
t_b b on
a.name1 = b.name1;
结果:
+---------+---------+---------+---------+--+
| aname1 | aname2 | aname1 | aname2 |
+---------+---------+---------+---------+--+
| a | 1 | a | xx |
| b | 2 | b | yy |
| d | 4 | d | zz |
| NULL | NULL | e | pp |
+---------+---------+---------+---------+--+
3.7.5 full outer join(full join)
sql:
select
a.name1 aname1,
a.name2 aname2,
b.name1 aname1,
b.name2 aname2
from
t_a a full outer join
t_b b on
a.name1 = b.name1;
结果:
+---------+---------+---------+---------+--+
| aname1 | aname2 | aname1 | aname2 |
+---------+---------+---------+---------+--+
| a | 1 | a | xx |
| b | 2 | b | yy |
| c | 3 | NULL | NULL |
| d | 4 | d | zz |
| NULL | NULL | e | pp |
+---------+---------+---------+---------+--+
3.7.6 left semi join
sql:
select
a.name1 aname1,
a.name2 aname2
from
t_a a left semi join
t_b b on
a.name1 = b.name1;
结果:
+---------+---------+--+
| aname1 | aname2 |
+---------+---------+--+
| a | 1 |
| b | 2 |
| d | 4 |
+---------+---------+--+
注意: left semi join的 select子句中,不能有右表的字段
3.8 group by分组聚合
注意:
- ==一旦有group by子句,那么,在select子句中就不能有 (分组字段,聚合函数) 以外的字段==
- ==么where必须写在group by的前面,group by后面的条件只能用having==
- where过滤不满足条件的数据
- 用聚合函数和group by进行数据运算聚合,得到聚合结果
- 用having条件过滤掉聚合结果中不满足条件的数据
- upper():
将字段变为大写
select ip, upper(url),time from t_pv_log;
+------------+-----------------------+----------------------+--+
| ip | _c1 | time |
+------------+-----------------------+----------------------+--+
| 10.8.9.41 | HTTP://WWW.BAIDU.COM | 2019-02-24 22:58:22 |
| 10.8.9.42 | HTTP://WWW.BAIDU.COM | 2019-02-24 22:48:22 |
| 10.8.9.43 | HTTP://WWW.BAIDU.COM | 2019-02-24 22:52:22 |
| 10.8.9.44 | HTTP://WWW.BAIDU.COM | 2019-02-24 22:53:22 |
+------------+-----------------------+----------------------+--+
- 分组
select url,count(id) nub from t_pv_log group by url;
+-------------------------+------+--+
| url | nub |
+-------------------------+------+--+
| http://www.baidu.com | 15 |
| http://www.baidu.com/a | 6 |
| http://www.baidu.com/b | 2 |
| http://www.baidu.com/c | 6 |
| http://www.baidu.com/d | 1 |
+-------------------------+------+--+
- 分组聚合
select url,max(time) nub from t_pv_log group by url;
+-------------------------+----------------------+--+
| url | nub |
+-------------------------+----------------------+--+
| http://www.baidu.com | 2019-02-24 22:59:26 |
| http://www.baidu.com/a | 2019-02-24 22:58:27 |
| http://www.baidu.com/b | 2019-02-24 22:58:25 |
| http://www.baidu.com/c | 2019-02-24 22:59:26 |
| http://www.baidu.com/d | 2019-02-24 22:53:22 |
+-------------------------+----------------------+--+
4 hive函数使用
都是对某一个字段的转换
hive函数手册
select substring ("abcdefghigk",1,3);//是从1开始 所有0或1 都是第一个
+------+--+
| _c0 |
+------+--+
| abc |
+------+--+
4.1 常用内置函数
4.1.1 类型转换函数
select cast("5" as int);
select cast("2019-02-25" as date) ;
select cast(current_timestamp as date);
//current_timestamp 为当前时间
//unix_timestamp() 毫秒时间
4.1.2 数学运算函数
- round() 随机数
select round(5.4) ;
select round(5.1345,3) ;
- 向上取整
select ceil(5.4) ;
- 向下取整
select floor(5.4);
- 取绝对值
select abs(-5.4);
- 取最大值
select greatest(3,5,6) ;
- 取最小值
select least(3,5,6);
4.1.3 字符串函数
- 截取子串
substr(string, int start)
substring(string, int start)
示例:select substr("abcdefg",2);//bcdefg
substr(string, int start, int len)
substring(string, int start, int len)
示例:select substr("abcdefg",2,3); //bcd
- 拼接字符串
concat(string A, string B...)
concat_ws(string SEP, string A, string B...)
示例:select concat("ab","xy"); //abxy
select concat_ws(".","192","168","33","44");//192.168.33.44
- 求长度
length(string A)
示例:select length("192.168.33.44");//13
- 分割
split(string str, string pat)
示例: select split("192.168.33.44","\\.");
- 转大写
upper(string str)
4.1.4 时间函数
- 取当前时间的毫秒数时间戳
select unix_timestamp();
- unix时间戳转字符串
from_unixtime(bigint unixtime[, string format])
示例:select from_unixtime(unix_timestamp());
select from_unixtime(unix_timestamp(),"yyyy/MM/dd HH:mm:ss");
- 字符串转unix时间戳
unix_timestamp(string date, string pattern)
示例: select unix_timestamp("2017-08-10 17:50:30");
select unix_timestamp("2017/08/10 17:50:30","yyyy/MM/dd HH:mm:ss");
- 将字符串转成日期date
select to_date("2017-09-17 16:58:32");