github地址
论文地址
使用Grad-CAM 对卷积网络中的特征图进行加权求和,得到卷积conv5的热力图,这种可视化机制必须有一个前置条件就是告诉算法具体的类别,通过这个输出y得到conv5的梯度,对梯度进行平均求和等降维操作,得到conv5中每个通道权重,这样 权重 x conv5 = 热力图,
简单的实现:
import keras
from keras.applications import VGG16
from keras import backend as K
import matplotlib.pyplot as plt
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np
import cv2
K.clear_session()
# The local path to our target image
img_path = './examples/cat_dog.png'
# `img` is a PIL image of size 224x224
img = image.load_img(img_path, target_size=(224, 224))
# `x` is a float32 Numpy array of shape (224, 224, 3)
x = image.img_to_array(img)
# We add a dimension to transform our array into a "batch"
# of size (1, 224, 224, 3)
x = np.expand_dims(x, axis=0)
# Finally we preprocess the batch
# (this does channel-wise color normalization)
x = preprocess_input(x)
# Note that we are including the densely-connected classifier on top;
# all previous times, we were discarding it.
model = VGG16(weights=None)
model.load_weights('vgg16_weights_tf_dim_ordering_tf_kernels.h5')
preds = model.predict(x)
print('Predicted:', decode_predictions(preds, top=3)[0])
preds = preds.tolist()[0]
preds_3 = sorted(preds, reverse=True)[:3]
print('preds_3: ', preds_3)
preds_3_index = [ preds.index(value) for value in preds_3]
index = np.argmax(preds)
print('index: ',index)
# 242, 243, 282
def cam(index, ):
# This is the "african elephant" entry in the prediction vector
african_elephant_output = model.output[:, index]
# The is the output feature map of the `block5_conv3` layer,
# the last convolutional layer in VGG16
last_conv_layer = model.get_layer('block5_conv3')
# This is the gradient of the "african elephant" class with regard to
# the output feature map of `block5_conv3`
grads = K.gradients(african_elephant_output, last_conv_layer.output)[0]
# This is a vector of shape (512,), where each entry
# is the mean intensity of the gradient over a specific feature map channel
pooled_grads = K.mean(grads, axis=(0, 1, 2))
# This function allows us to access the values of the quantities we just defined:
# `pooled_grads` and the output feature map of `block5_conv3`,
# given a sample image
iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])
# These are the values of these two quantities, as Numpy arrays,
# given our sample image of two elephants
pooled_grads_value, conv_layer_output_value = iterate([x])
# We multiply each channel in the feature map array
# by "how important this channel is" with regard to the elephant class
for i in range(512):
conv_layer_output_value[:, :, i] *= pooled_grads_value[i]
# The channel-wise mean of the resulting feature map
# is our heatmap of class activation
heatmap = np.mean(conv_layer_output_value, axis=-1)
heatmap = np.maximum(heatmap, 0)
return heatmap
heatmap = cam(index)
# print('preds_3_index : ',preds_3_index)
# for index in preds_3_index:
# heatmap += cam(index)
heatmap /= np.max(heatmap)
# print(heatmap.shape)
# plt.matshow(heatmap)
# plt.show()
#
# We use cv2 to load the original image
img = cv2.imread(img_path)
# We resize the heatmap to have the same size as the original image
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
# We convert the heatmap to RGB
heatmap = np.uint8(255 * heatmap)
# We apply the heatmap to the original image
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
# 0.4 here is a heatmap intensity factor
superimposed_img = heatmap * 0.4 + img
# Save the image to disk
cv2.imwrite('catdog_cam.jpg', superimposed_img)
效果:
pytorch 的代码:
import torch
from torch.autograd import Variable
from torch.autograd import Function
from torchvision import models
from torchvision import utils
import cv2
import sys
import numpy as np
import argparse
class FeatureExtractor():
""" Class for extracting activations and
registering gradients from targetted intermediate layers """
def __init__(self, model, target_layers):
self.model = model
self.target_layers = target_layers
self.gradients = []
def save_gradient(self, grad):
self.gradients.append(grad)
def __call__(self, x):
outputs = []
self.gradients = []
for name, module in self.model._modules.items():
x = module(x)
if name in self.target_layers:
x.register_hook(self.save_gradient)
outputs += [x]
return outputs, x
class ModelOutputs():
""" Class for making a forward pass, and getting:
1. The network output.
2. Activations from intermeddiate targetted layers.
3. Gradients from intermeddiate targetted layers. """
def __init__(self, model, target_layers):
self.model = model
self.feature_extractor = FeatureExtractor(self.model.features, target_layers)
def get_gradients(self):
return self.feature_extractor.gradients
def __call__(self, x):
target_activations, output = self.feature_extractor(x)
output = output.view(output.size(0), -1)
output = self.model.classifier(output)
return target_activations, output
def preprocess_image(img):
means=[0.485, 0.456, 0.406]
stds=[0.229, 0.224, 0.225]
preprocessed_img = img.copy()[: , :, ::-1]
for i in range(3):
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
preprocessed_img = \
np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
preprocessed_img = torch.from_numpy(preprocessed_img)
preprocessed_img.unsqueeze_(0)
input = Variable(preprocessed_img, requires_grad = True)
return input
def show_cam_on_image(img, mask):
heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
cv2.imwrite("cam.jpg", np.uint8(255 * cam))
class GradCam:
def __init__(self, model, target_layer_names, use_cuda):
self.model = model
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
self.extractor = ModelOutputs(self.model, target_layer_names)
def forward(self, input):
return self.model(input)
def __call__(self, input, index = None):
if self.cuda:
features, output = self.extractor(input.cuda())
else:
features, output = self.extractor(input)
if index == None:
index = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32)
one_hot[0][index] = 1
one_hot = Variable(torch.from_numpy(one_hot), requires_grad = True)
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
self.model.features.zero_grad()
self.model.classifier.zero_grad()
one_hot.backward(retain_variables=True)
grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()
target = features[-1]
target = target.cpu().data.numpy()[0, :]
weights = np.mean(grads_val, axis = (2, 3))[0, :]
cam = np.zeros(target.shape[1 : ], dtype = np.float32)
for i, w in enumerate(weights):
cam += w * target[i, :, :]
cam = np.maximum(cam, 0)
cam = cv2.resize(cam, (224, 224))
cam = cam - np.min(cam)
cam = cam / np.max(cam)
return cam
class GuidedBackpropReLU(Function):
def forward(self, input):
positive_mask = (input > 0).type_as(input)
output = torch.addcmul(torch.zeros(input.size()).type_as(input), input, positive_mask)
self.save_for_backward(input, output)
return output
def backward(self, grad_output):
input, output = self.saved_tensors
grad_input = None
positive_mask_1 = (input > 0).type_as(grad_output)
positive_mask_2 = (grad_output > 0).type_as(grad_output)
grad_input = torch.addcmul(torch.zeros(input.size()).type_as(input), torch.addcmul(torch.zeros(input.size()).type_as(input), grad_output, positive_mask_1), positive_mask_2)
return grad_input
class GuidedBackpropReLUModel:
def __init__(self, model, use_cuda):
self.model = model
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
# replace ReLU with GuidedBackpropReLU
for idx, module in self.model.features._modules.items():
if module.__class__.__name__ == 'ReLU':
self.model.features._modules[idx] = GuidedBackpropReLU()
def forward(self, input):
return self.model(input)
def __call__(self, input, index = None):
if self.cuda:
output = self.forward(input.cuda())
else:
output = self.forward(input)
if index == None:
index = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32)
one_hot[0][index] = 1
one_hot = Variable(torch.from_numpy(one_hot), requires_grad = True)
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
# self.model.features.zero_grad()
# self.model.classifier.zero_grad()
one_hot.backward(retain_variables=True)
output = input.grad.cpu().data.numpy()
output = output[0,:,:,:]
return output
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--use-cuda', action='store_true', default=False,
help='Use NVIDIA GPU acceleration')
parser.add_argument('--image-path', type=str, default='./examples/both.png',
help='Input image path')
args = parser.parse_args()
args.use_cuda = args.use_cuda and torch.cuda.is_available()
if args.use_cuda:
print("Using GPU for acceleration")
else:
print("Using CPU for computation")
return args
if __name__ == '__main__':
""" python grad_cam.py
1. Loads an image with opencv.
2. Preprocesses it for VGG19 and converts to a pytorch variable.
3. Makes a forward pass to find the category index with the highest score,
and computes intermediate activations.
Makes the visualization. """
args = get_args()
# Can work with any model, but it assumes that the model has a
# feature method, and a classifier method,
# as in the VGG models in torchvision.
grad_cam = GradCam(model = models.vgg19(pretrained=True), \
target_layer_names = ["35"], use_cuda=args.use_cuda)
img = cv2.imread(args.image_path, 1)
img = np.float32(cv2.resize(img, (224, 224))) / 255
input = preprocess_image(img)
# If None, returns the map for the highest scoring category.
# Otherwise, targets the requested index.
target_index = None
mask = grad_cam(input, target_index)
show_cam_on_image(img, mask)
gb_model = GuidedBackpropReLUModel(model = models.vgg19(pretrained=True), use_cuda=args.use_cuda)
gb = gb_model(input, index=target_index)
utils.save_image(torch.from_numpy(gb), 'gb.jpg')
cam_mask = np.zeros(gb.shape)
for i in range(0, gb.shape[0]):
cam_mask[i, :, :] = mask
cam_gb = np.multiply(cam_mask, gb)
utils.save_image(torch.from_numpy(cam_gb), 'cam_gb.jpg')
在目标检测中的效果图
使用pytorch实现,在目标检测中使用,本人也是一知半解,这是一个FPN检测网络结果的展示图。
参考:
“卷积可视化”:Grad-CAM
原作的github
Yes, Deep Networks are great, but are they Trustworthy?
pytorch中的钩子(Hook)有何作用 和 查看模型中间结果
pytorch中autograd以及hook函数详解
pytorch-grad-cam