Grad-CAM 卷积网络中的热力图

github地址
论文地址
使用Grad-CAM 对卷积网络中的特征图进行加权求和,得到卷积conv5的热力图,这种可视化机制必须有一个前置条件就是告诉算法具体的类别,通过这个输出y得到conv5的梯度,对梯度进行平均求和等降维操作,得到conv5中每个通道权重,这样 权重 x conv5 = 热力图,

简单的实现:

import keras
from keras.applications import VGG16
from keras import backend as K
import matplotlib.pyplot as plt
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np
import cv2
K.clear_session()


# The local path to our target image
img_path = './examples/cat_dog.png'

# `img` is a PIL image of size 224x224
img = image.load_img(img_path, target_size=(224, 224))

# `x` is a float32 Numpy array of shape (224, 224, 3)
x = image.img_to_array(img)

# We add a dimension to transform our array into a "batch"
# of size (1, 224, 224, 3)
x = np.expand_dims(x, axis=0)

# Finally we preprocess the batch
# (this does channel-wise color normalization)
x = preprocess_input(x)

# Note that we are including the densely-connected classifier on top;
# all previous times, we were discarding it.
model = VGG16(weights=None)
model.load_weights('vgg16_weights_tf_dim_ordering_tf_kernels.h5')

preds = model.predict(x)
print('Predicted:', decode_predictions(preds, top=3)[0])
preds = preds.tolist()[0]
preds_3 =  sorted(preds, reverse=True)[:3]
print('preds_3: ', preds_3)
preds_3_index = [ preds.index(value) for value in preds_3]
index = np.argmax(preds)
print('index: ',index)

# 242, 243, 282
def cam(index, ):
    # This is the "african elephant" entry in the prediction vector
    african_elephant_output = model.output[:, index]
    # The is the output feature map of the `block5_conv3` layer,
    # the last convolutional layer in VGG16
    last_conv_layer = model.get_layer('block5_conv3')

    # This is the gradient of the "african elephant" class with regard to
    # the output feature map of `block5_conv3`
    grads = K.gradients(african_elephant_output, last_conv_layer.output)[0]

    # This is a vector of shape (512,), where each entry
    # is the mean intensity of the gradient over a specific feature map channel
    pooled_grads = K.mean(grads, axis=(0, 1, 2))

    # This function allows us to access the values of the quantities we just defined:
    # `pooled_grads` and the output feature map of `block5_conv3`,
    # given a sample image
    iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])

    # These are the values of these two quantities, as Numpy arrays,
    # given our sample image of two elephants
    pooled_grads_value, conv_layer_output_value = iterate([x])

    # We multiply each channel in the feature map array
    # by "how important this channel is" with regard to the elephant class
    for i in range(512):
        conv_layer_output_value[:, :, i] *= pooled_grads_value[i]

    # The channel-wise mean of the resulting feature map
    # is our heatmap of class activation
    heatmap = np.mean(conv_layer_output_value, axis=-1)
    heatmap = np.maximum(heatmap, 0)
    return heatmap

heatmap = cam(index)
# print('preds_3_index : ',preds_3_index)
# for index in preds_3_index:
#     heatmap += cam(index)
heatmap /= np.max(heatmap)
# print(heatmap.shape)
# plt.matshow(heatmap)
# plt.show()

#
# We use cv2 to load the original image
img = cv2.imread(img_path)

# We resize the heatmap to have the same size as the original image
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))

# We convert the heatmap to RGB
heatmap = np.uint8(255 * heatmap)

# We apply the heatmap to the original image
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

# 0.4 here is a heatmap intensity factor
superimposed_img = heatmap * 0.4 + img

# Save the image to disk
cv2.imwrite('catdog_cam.jpg', superimposed_img)

效果:

pytorch 的代码:

import torch
from torch.autograd import Variable
from torch.autograd import Function
from torchvision import models
from torchvision import utils
import cv2
import sys
import numpy as np
import argparse

class FeatureExtractor():
    """ Class for extracting activations and 
    registering gradients from targetted intermediate layers """
    def __init__(self, model, target_layers):
        self.model = model
        self.target_layers = target_layers
        self.gradients = []

    def save_gradient(self, grad):
        self.gradients.append(grad)

    def __call__(self, x):
        outputs = []
        self.gradients = []
        for name, module in self.model._modules.items():
            x = module(x)
            if name in self.target_layers:
                x.register_hook(self.save_gradient)
                outputs += [x]
        return outputs, x

class ModelOutputs():
    """ Class for making a forward pass, and getting:
    1. The network output.
    2. Activations from intermeddiate targetted layers.
    3. Gradients from intermeddiate targetted layers. """
    def __init__(self, model, target_layers):
        self.model = model
        self.feature_extractor = FeatureExtractor(self.model.features, target_layers)

    def get_gradients(self):
        return self.feature_extractor.gradients

    def __call__(self, x):
        target_activations, output  = self.feature_extractor(x)
        output = output.view(output.size(0), -1)
        output = self.model.classifier(output)
        return target_activations, output

def preprocess_image(img):
    means=[0.485, 0.456, 0.406]
    stds=[0.229, 0.224, 0.225]

    preprocessed_img = img.copy()[: , :, ::-1]
    for i in range(3):
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
    preprocessed_img = \
        np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
    preprocessed_img = torch.from_numpy(preprocessed_img)
    preprocessed_img.unsqueeze_(0)
    input = Variable(preprocessed_img, requires_grad = True)
    return input

def show_cam_on_image(img, mask):
    heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
    heatmap = np.float32(heatmap) / 255
    cam = heatmap + np.float32(img)
    cam = cam / np.max(cam)
    cv2.imwrite("cam.jpg", np.uint8(255 * cam))

class GradCam:
    def __init__(self, model, target_layer_names, use_cuda):
        self.model = model
        self.model.eval()
        self.cuda = use_cuda
        if self.cuda:
            self.model = model.cuda()

        self.extractor = ModelOutputs(self.model, target_layer_names)

    def forward(self, input):
        return self.model(input) 

    def __call__(self, input, index = None):
        if self.cuda:
            features, output = self.extractor(input.cuda())
        else:
            features, output = self.extractor(input)

        if index == None:
            index = np.argmax(output.cpu().data.numpy())

        one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32)
        one_hot[0][index] = 1
        one_hot = Variable(torch.from_numpy(one_hot), requires_grad = True)
        if self.cuda:
            one_hot = torch.sum(one_hot.cuda() * output)
        else:
            one_hot = torch.sum(one_hot * output)

        self.model.features.zero_grad()
        self.model.classifier.zero_grad()
        one_hot.backward(retain_variables=True)

        grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()

        target = features[-1]
        target = target.cpu().data.numpy()[0, :]

        weights = np.mean(grads_val, axis = (2, 3))[0, :]
        cam = np.zeros(target.shape[1 : ], dtype = np.float32)

        for i, w in enumerate(weights):
            cam += w * target[i, :, :]

        cam = np.maximum(cam, 0)
        cam = cv2.resize(cam, (224, 224))
        cam = cam - np.min(cam)
        cam = cam / np.max(cam)
        return cam

class GuidedBackpropReLU(Function):

    def forward(self, input):
        positive_mask = (input > 0).type_as(input)
        output = torch.addcmul(torch.zeros(input.size()).type_as(input), input, positive_mask)
        self.save_for_backward(input, output)
        return output

    def backward(self, grad_output):
        input, output = self.saved_tensors
        grad_input = None

        positive_mask_1 = (input > 0).type_as(grad_output)
        positive_mask_2 = (grad_output > 0).type_as(grad_output)
        grad_input = torch.addcmul(torch.zeros(input.size()).type_as(input), torch.addcmul(torch.zeros(input.size()).type_as(input), grad_output, positive_mask_1), positive_mask_2)

        return grad_input

class GuidedBackpropReLUModel:
    def __init__(self, model, use_cuda):
        self.model = model
        self.model.eval()
        self.cuda = use_cuda
        if self.cuda:
            self.model = model.cuda()

        # replace ReLU with GuidedBackpropReLU
        for idx, module in self.model.features._modules.items():
            if module.__class__.__name__ == 'ReLU':
                self.model.features._modules[idx] = GuidedBackpropReLU()

    def forward(self, input):
        return self.model(input)

    def __call__(self, input, index = None):
        if self.cuda:
            output = self.forward(input.cuda())
        else:
            output = self.forward(input)

        if index == None:
            index = np.argmax(output.cpu().data.numpy())

        one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32)
        one_hot[0][index] = 1
        one_hot = Variable(torch.from_numpy(one_hot), requires_grad = True)
        if self.cuda:
            one_hot = torch.sum(one_hot.cuda() * output)
        else:
            one_hot = torch.sum(one_hot * output)

        # self.model.features.zero_grad()
        # self.model.classifier.zero_grad()
        one_hot.backward(retain_variables=True)

        output = input.grad.cpu().data.numpy()
        output = output[0,:,:,:]

        return output

def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--use-cuda', action='store_true', default=False,
                        help='Use NVIDIA GPU acceleration')
    parser.add_argument('--image-path', type=str, default='./examples/both.png',
                        help='Input image path')
    args = parser.parse_args()
    args.use_cuda = args.use_cuda and torch.cuda.is_available()
    if args.use_cuda:
        print("Using GPU for acceleration")
    else:
        print("Using CPU for computation")

    return args

if __name__ == '__main__':
    """ python grad_cam.py 
    1. Loads an image with opencv.
    2. Preprocesses it for VGG19 and converts to a pytorch variable.
    3. Makes a forward pass to find the category index with the highest score,
    and computes intermediate activations.
    Makes the visualization. """

    args = get_args()

    # Can work with any model, but it assumes that the model has a 
    # feature method, and a classifier method,
    # as in the VGG models in torchvision.
    grad_cam = GradCam(model = models.vgg19(pretrained=True), \
                    target_layer_names = ["35"], use_cuda=args.use_cuda)

    img = cv2.imread(args.image_path, 1)
    img = np.float32(cv2.resize(img, (224, 224))) / 255
    input = preprocess_image(img)

    # If None, returns the map for the highest scoring category.
    # Otherwise, targets the requested index.
    target_index = None

    mask = grad_cam(input, target_index)

    show_cam_on_image(img, mask)

    gb_model = GuidedBackpropReLUModel(model = models.vgg19(pretrained=True), use_cuda=args.use_cuda)
    gb = gb_model(input, index=target_index)
    utils.save_image(torch.from_numpy(gb), 'gb.jpg')

    cam_mask = np.zeros(gb.shape)
    for i in range(0, gb.shape[0]):
        cam_mask[i, :, :] = mask

    cam_gb = np.multiply(cam_mask, gb)
    utils.save_image(torch.from_numpy(cam_gb), 'cam_gb.jpg')

在目标检测中的效果图

使用pytorch实现,在目标检测中使用,本人也是一知半解,这是一个FPN检测网络结果的展示图。

参考:

“卷积可视化”:Grad-CAM
原作的github
Yes, Deep Networks are great, but are they Trustworthy?
pytorch中的钩子(Hook)有何作用 和 查看模型中间结果
pytorch中autograd以及hook函数详解
pytorch-grad-cam

你可能感兴趣的:(Grad-CAM 卷积网络中的热力图)