O(N)时间复杂度 求100万以内的所有质数

欧拉筛 (线性筛)

定义: 对于一个数x,所有 <=lpf(x) 的数与x相乘都不是质数, lpf(x):x的最小质因数

根据这个定理,可以一边求质数一边划掉他后面许多的合数,之所以这样划是因为这样的话所有的合数只会被划掉一次!所以是线性时间复杂度的!
由于每一个数只会被划掉一次,所以时间复杂度是 O(N+N) = O(N),是线性的

MX = 10 ** 6
primes = []
is_prime = [True] * (MX + 1)
for i in range(2, MX + 1):
    if is_prime[i]:
        primes.append(i)
    for j in primes:
        if j * i > MX: 
        	break  # 超出范围直接break
        	
        # 无论情况如何,i*j这个数一定不会是质数
        is_prime[j * i] = False
        # 如果j % i==0则j就是 lpf(i)
        if j % i == 0:
            break
            

# primes 中包含了[1, MX]范围内的所有质数,注意:1不是质数
#    所以primes中没有1
print(primes)

你可能感兴趣的:(算法相关,算法)