YOLOv5快速使用

  1. 快速开始项目:
    • 准备自己的数据集
    • 创建对应的配置文件: 'data/xx.yaml'
    • 修改预训练的配置文件:'models/yolov5s.yaml'
    • 下载最新预训练模型到weights目录下
    • 开始训练:
      python train.py --img 640 --batch 16 --epochs 500 --data go.yaml --weights weights/yolov5s.pt
      (可以修改train.py中的相关参数的默认配置,方便下次训练)
    • 测试:
      python test.py  --data data/go.yaml --weights  E:\GDUT\python_project\ObjectDection\Yolov5\runs\train\exp13\weights\best.pt --augment
      
    • 检测:
      python detect.py --weight runs\train\exp14\weights\best.pt--source data/testImg
      
    • tensbard查看:
      tensorboard --logdir=runs
      
  1. 数据集的准备:

    • 认识voc与yolo两种格式的数据集:
      voc数据的格式 :参考

      • folder: 文件夹
        filename:文件名
        database: 数据库名
        annotation: 标记文件格式
        size:图像尺寸,width宽、height高,depth通道数
        segmented: 分割
        object, name: 标签名;
        pose:是否是姿势
        truncated:是否被截断;
        difficult:是否识别困难。
        bndbox, 边界框位置
      • https://www.cnblogs.com/sdu20112013/p/10801383.html
      • https://www.sohu.com/a/333069232_823210
      • 验证集+训练集不一定等于你手头中的所有图片
        https://www.itdaan.com/blog/2016/11/19/4ac13e9a711e3804c559f84e6bd922b3.html
    • yolo标签的格式(需要归一化) 参考

          
      

      x,y是目标的中心坐标,width,height是目标的宽和高

  2. 训练集、验证集与测试集的选择:

    • https://zhuanlan.zhihu.com/p/48976706
  1. 相关脚本:

    • 文件统一命名
    ## 将目录下面的图片从起始编号开始按顺序命名
    import os
    path=os.getcwd()
    print("当前所在路径:"+path)
    path=input("输入文件路径:")
    if(path[-1]!="\\"):
    path=path+"\\"
    # C:/Users/zh/Desktop/围棋数据集补充/数据集图片/
    a=input("输入起始编号:")
    type=input("文件后缀:")
    ##创建文件夹
    # if not os.path.exists(res_path):
    #     os.makedirs(res_path)
    f=os.listdir(path)
    for index,i in enumerate(f):
    if os.path.isfile(path+i) and  (path+i).endswith("."+type):
         ## 重命名并删除
         if  (os.path.exists(path+str(int(a)+index)+"."+type)):
              print("文件名冲突")
         else:
              os.rename(path+i,path+str(int(a)+index)+"."+type)
    
    • voc训练集与验证集以及测试集的划分
    # 参考:https://my.oschina.net/u/4870686/blog/4803148
    # 作用: 划分xml文件名到四个txt文件去
    # 说明: 数据集全部拿来训练(其中80%作为训练集20%作为验证集),不留测试集
    train_and_valid=1.0
    train_percent = 0.8
    
    ##输入xml文件路径:
    xml_file_path=input("请输入xml文件路径:")
    txt_save_path=input("将要保存的路径:")
    
    if(xml_file_path==""):
    xml_file_path='Annotations'
    if(txt_save_path==""):
    txt_save_path='ImageSets/Main'
    
    # xml文件对象
    total_xml = os.listdir(xml_file_path)
    
    if not os.path.exists(txt_save_path):
    os.makedirs(txt_save_path)
    
    num = len(total_xml)
    list_index = range(num)
    
    num_train_and_valid = int(num*train_and_valid)
    num_train = int(num_train_and_valid * train_percent)
    
    ## 从数据集中选择出用于训练的部分
    index_train_and_valid = random.sample(list_index,num_train_and_valid)
    ##  训练集的编号(在上一步随机的基础上在随机挑选)
    index_train = random.sample(index_train_and_valid,num_train)
    
    file_train_and_valid = open(txt_save_path + '/trainval.txt', 'w')
    file_test = open(txt_save_path + '/test.txt', 'w')
    file_train = open(txt_save_path + '/train.txt', 'w')
    file_val = open(txt_save_path + '/val.txt', 'w')
    
    ##
    for i in list_index:
    ## 获取每个文件名(去除后缀)
    name = total_xml[i][:-4] + '\n'
    if i in index_train_and_valid :
         ## 训练+验证
         file_train_and_valid.write(name)
         if i in index_train:
              ## 训练
              file_train.write(name)
         else:
              ## 验证
              file_val.write(name)
    ## 测试集
    else:
         file_test.write(name)
    
    file_train_and_valid .close()
    file_train.close()
    file_val.close()
    file_test.close()
    
    • voc格式转yolo格式
    import xml.etree.ElementTree as ET
    import os
    from os import getcwd
    
    dir_type = ['train', 'val']
    classes = ["wdj"]   # 改成自己的类别
    abs_path = os.getcwd()
    print(abs_path)
    
    ## voc to Yolo
    def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    ## 归一化
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h
    
    def convert_annotation(image_id):
    ## 读取xml
    in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')
    ## 创建 将要保存的文件
    out_file = open('labels/%s.txt' % (image_id), 'w')
    # xml工具
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    ## 图片的w\h
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    
    ## 多目标检测
    for obj in root.iter('object'):
    
         difficult = obj.find('difficult').text
         ## 类别
         cls = obj.find('name').text
         ## 类别问题 跳过
         if cls not in classes or int(difficult) == 1:
              continue
         cls_id = classes.index(cls)
         # 上下左右边界
         xmlbox = obj.find('bndbox')
         b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
              float(xmlbox.find('ymax').text))
         b1, b2, b3, b4 = b
         # 标注越界修正
         if b2 > w:
              b2 = w
         if b4 > h:
              b4 = h
         b = (b1, b2, b3, b4)
         bb = convert((w, h), b)
         out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    
    wd = getcwd()
    
    ##   E:\GDUT\python_project\ObjectDection\dataset\wdj2
    
    test_file=open("file.txt","w")
    test_file.write("测试内容")
    
    
    ##分别读取三个划分文件:
    for dir in dir_type:
    
    if not os.path.exists('labels/'):
         os.makedirs('labels/')
    
    ##从划分的txt文件中获取图片id
    image_ids = open('ImageSets/Main/%s.txt' % (dir)).read().strip().split()
    
    ##根目录创建txt文件保存图片绝对路径:
    ##list_file = open('%s.txt' % (dir), 'w')
    
    for image_id in image_ids:
         ## 图片写入指定的目录
         ##list_file.write(abs_path + '\\JPGEImages\\%s.jpg\n' % (image_id))
         convert_annotation(image_id)
    ##list_file.close()
    
    • yolo数据集中训练集、验证集、测试集的划分
    ## 将yolo数据集的格式 按照比例进行划分 用于训练
    
    # 训练集、验证集和测试集的比例分配
    test_percent = 0
    valid_percent = 0.2
    train_percent = 0.8
    
    # 标注文件的路径
    srcImg_path=input("源图片路径:")
    label_path=input("标签文件路劲:")
    if(srcImg_path==""):
    image_path = 'JPEGImages'
    if(label_path==""):
    label_path = 'labels'
    
    ##目标存储文件夹:
    save_path=input("Yolo数据集存储位置:")
    
    if(save_path[-1]!="\\"):
    save_path=save_path+"\\"
    
    ##获取文件夹下的文件对象
    images_files_list = os.listdir(image_path)
    labels_files_list = os.listdir(label_path)
    
    total_num = len(images_files_list)
    
    test_num = int(total_num * test_percent)
    valid_num = int(total_num * valid_percent)
    train_num = int(total_num * train_percent)
    
    # 对应文件的索引
    test_image_index = random.sample(range(total_num), test_num)
    valid_image_index = random.sample(range(total_num), valid_num)
    train_image_index = random.sample(range(total_num), train_num)
    
    dir=["train","valid","test"]
    sub_dir=["images","labels"]
    for d in dir:
    if not os.path.exists(save_path+d):
         os.makedirs(save_path+d)
    for sd in sub_dir:
         if not os.path.exists(save_path+d+"/"+sd):
              os.makedirs(save_path+d+"/"+sd)
    
    
    for i in range(total_num):
    if i in test_image_index:
         # 将图片和标签文件拷贝到对应文件夹下
         shutil.copyfile('JPEGImages/{}'.format(images_files_list[i]), save_path+'test/images/{}'.format(images_files_list[i]))
         shutil.copyfile('labels/{}'.format(labels_files_list[i]), save_path+'test/labels/{}'.format(labels_files_list[i]))
    elif i in valid_image_index:
         shutil.copyfile('JPEGImages/{}'.format(images_files_list[i]), save_path+'valid/images/{}'.format(images_files_list[i]))
         shutil.copyfile('labels/{}'.format(labels_files_list[i]), save_path+'valid/labels/{}'.format(labels_files_list[i]))
    else:
         shutil.copyfile('JPEGImages/{}'.format(images_files_list[i]), save_path+'train/images/{}'.format(images_files_list[i]))
         shutil.copyfile('labels/{}'.format(labels_files_list[i]), save_path+'train/labels/{}'.format(labels_files_list[i]))
    
    

你可能感兴趣的:(YOLOv5快速使用)