【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→TIM→OC输出

文章目录

    • 前言
      • 1.CubeMx的配置步骤
      • 2.生成工程
      • 3.测试代码
      • 4.演示效果
    • 总结

前言

定时器具有
1.Base
2.PWM
3.IC
4.OC
这四种功能,前面我们以及讲完了Base(按键部分),PWM功能,IC功能,接下来我们要学习的是定时器的OC(输出比较)功能。

1.CubeMx的配置步骤

修改上一次IC捕获的ioc文件来生成工程
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→TIM→OC输出_第1张图片
修改PA2,PA3为定时器15的通道1和通道2。
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→TIM→OC输出_第2张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→TIM→OC输出_第3张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→TIM→OC输出_第4张图片

2.生成工程

点击GENERATE CODE生成代码后点击Open Project即可。
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→TIM→OC输出_第5张图片

3.测试代码

interrupt.h:

#ifndef __INTERRUPT_H__
#define __INTERRUPT_H__

#include "main.h"

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim);
void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim);

#endif

interrupt.c:

#include "interrupt.h"
#include "lcd.h"
#include "stdio.h"
unsigned int Period = 0;
unsigned int HighTime = 0;
unsigned char OC1_Duty = 25;
unsigned char OC2_Duty = 75;
unsigned short OC1_Pulse = 1000;
unsigned short OC2_Pulse = 4000;


void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
	if(htim->Instance == TIM2)
	{
		if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
		{
			Period = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); //读取直接通道
			HighTime = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); //读取间接通道
			__HAL_TIM_SetCounter(htim, 0);
			HAL_TIM_IC_Start_IT(htim, TIM_CHANNEL_1); //开启中断以便于下次采值
			HAL_TIM_IC_Start_IT(htim, TIM_CHANNEL_2);
		}
	}
}

void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
{
	if(htim->Instance == TIM15)
	{
		unsigned short CapVal = 0;
		if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
		{
			CapVal = __HAL_TIM_GetCompare(htim, TIM_CHANNEL_1);
			if(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_2) == GPIO_PIN_RESET)
			{
				__HAL_TIM_SET_COMPARE(htim, TIM_CHANNEL_1, CapVal + OC1_Pulse - OC1_Duty / 100.0 * OC1_Pulse);
			}
			else
			{
				__HAL_TIM_SET_COMPARE(htim, TIM_CHANNEL_1, CapVal + OC1_Duty / 100.0 * OC1_Pulse);
			}
				
		}
		else if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
		{
			CapVal = __HAL_TIM_GetCompare(htim, TIM_CHANNEL_2);
			if(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_3) == GPIO_PIN_RESET)
			{
				__HAL_TIM_SetCompare(htim, TIM_CHANNEL_2, CapVal + (1 - OC2_Duty / 100.0) * OC2_Pulse);
			}
			else
			{
				__HAL_TIM_SetCompare(htim, TIM_CHANNEL_2, CapVal + OC2_Duty / 100.0 * OC2_Pulse);
			}
		}
	}
}

main.c:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2023 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */
/* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "tim.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "lcd.h" #include "stdio.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ extern unsigned int Period; extern unsigned int HighTime; char text[30]; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_TIM15_Init(); MX_TIM3_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1); HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2); HAL_TIM_OC_Start_IT(&htim15, TIM_CHANNEL_1); HAL_TIM_OC_Start_IT(&htim15, TIM_CHANNEL_2); LCD_Init(); LCD_Clear(Black); LCD_SetBackColor(Black); LCD_SetTextColor(White); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ sprintf(text, "frq:%.2f ", 1000000.0 / Period); //分频成1MHz所以这里1000000.0作为被除数 LCD_DisplayStringLine(Line0, text); sprintf(text, "Duty:%.2f ", HighTime / (float)Period * 100); //占空比为高电平时间 / 周期 * 100% LCD_DisplayStringLine(Line1, text); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3; RCC_OscInitStruct.PLL.PLLN = 20; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

4.演示效果

总结

从结果来看我们目标是PA2输出1000Hz占空比为25%的PWM波但最后测量频率为1026和23%的波形,误差比较大。PA3目标输出250Hz占空比为75%的PWM波,但最后输出的是252.84Hz和74.72%的PWM波,误差虽然存在但与PA2输出的波形比较,误差算是少一点,我们可以知道OC输出高频率PWM波时存在很严重的波形失真现象,但在输出低频率PWM波时这种情况就好一点,TIM的PWM模式不会有这样的问题但是PWM模式下定时器各个通道输出PWM波频率相同(占空比可以不同),不能实现每个通道占空比不同且频率也不同的情况。OC模式下虽然不支持输出高频率PWM波,但是它能实现每个通道的PWM波频率不同占空比也不同。

以上就是OC的配置过程,测试代码以及测试效果
参考的学习视频:【STM32】输出比较模式讲解以及STM32CUBEMX+MDK代码实现
之前的模块配置方法及测试:
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→LED
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→LCD
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→KEY→单击
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→KEY→长按(持续响应)以及双击
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→TIM→PWM
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→ADC
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→I2C→M24C02
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→UART
【STM32G431RBTx】备战蓝桥杯嵌入式→基本模块→TIM→IC捕获

你可能感兴趣的:(蓝桥杯,stm32,单片机)