2017年第八届C/C++ B组蓝桥杯省赛真题

文章目录

    • 第一题:购物单(5分)
        • 题目描述
        • 题目分析
        • 题目代码
        • 题目答案
    • 第二题:等差素数列(7分)
        • 题目描述
        • 题目分析
        • 题目代码
        • 题目答案
    • 第三题:承压计算(13分)
        • 题目描述
        • 题目分析
        • 题目代码
        • 题目答案
    • 第四题:方格分割(17分)
        • 题目描述
        • 题目分析
        • 题目代码
        • 题目答案
    • 第七题:日期问题(19分)
        • 题目描述
        • 题目分析
        • 题目代码
    • 第八题:包子凑数(21分)
        • 题目描述
        • 题目分析
        • 题目代码
    • 第九题:分巧克力(23分)
        • 题目描述
        • 题目分析
        • 题目代码
    • 第十题:k倍区间(25分)
        • 题目描述
        • 题目分析
        • 题目代码


第一题:购物单(5分)

题目描述

小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。
这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。
取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。 你的任务是计算出,小明最少需要取多少现金。以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。

****     180.90       88 
****      10.25       65
****      56.14       90
****     104.65       90
****     100.30       80
****     297.15       50
****      26.75       65
****     130.62       50
****     240.28       58
****     270.62       80
****     115.87       88
****     247.34       95
****      73.21       90
****     101.00       50
****      79.54       50
****     278.44       70
****     199.26       50
****      12.97       90
****     166.30       78
****     125.50       58
****      84.98       90
****     113.35       68
****     166.57       50
****      42.56       90
****      81.90       95
****     131.78       80
****     255.89       78
****     109.17       90
****     146.69       68
****     139.33       65
****     141.16       78
****     154.74       80
****      59.42       80
****      85.44       68
****     293.70       88
****     261.79       65
****      11.30       88
****     268.27       58
****     128.29       88
****     251.03       80
****     208.39       75
****     128.88       75
****      62.06       90
****     225.87       75
****      12.89       75
****      34.28       75
****      62.16       58
****     129.12       50
****     218.37       50
****     289.69       80

需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
特别提醒:不许携带计算器入场,也不能打开手机。

题目分析

使用scanf读取数据,要控制输入的格式.Ctrl+Z (+两次回车)结束输入

题目代码

#include
using namespace std;

int main(){
	double sum = 0,price;
	int k;
	
	while(scanf("**** %lf %d\n",&price,&k)) {
		sum += price* k /100;
	}
	cout<<sum<<endl;//5128.84 因为结果必然是00,所以答案为5200
	return 0;
}

题目答案

5200

第二题:等差素数列(7分)

题目描述

2,3,5,7,11,13,…是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。这是数论领域一项惊人的成果!

有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:长度为10的等差素数列,其公差最小值是多少?
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。

题目分析

暴力解题,使用三层循环

题目代码

#include
using namespace std;
bool book[100005];
bool isPrime(int n) { //判断是否是素数
	for(int i = 2; i * i <= n; i++) {
		if(n%i==0) {
			return false;
		}
	}
	return true;
}

int main() {
	for(int i = 2; i<100005; i++) { //打表
		if(isPrime(i)) {
			book[i] = true;
		}
	}
	for(int i = 1; i < 100005; i++) { //数列的起始位置
		for(int j = 1; j<= 1000; j++) { //公差
			int flag = 0;
			for(int k = 0; k < 10; k++){
				if(!book[i+k*j]){
					flag = 1;
					break;
				}
			}
			if(!flag){
				cout<<j<<endl;//210
				return 0;
			}
		}
	}
	return 0;
}

题目答案

210

第三题:承压计算(13分)

题目描述

X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。

                             7
                            5 8
                           7 8 8
                          9 2 7 2
                         8 1 4 9 1
                        8 1 8 8 4 1
                       7 9 6 1 4 5 4
                      5 6 5 5 6 9 5 6
                     5 5 4 7 9 3 5 5 1
                    7 5 7 9 7 4 7 3 3 1
                   4 6 4 5 5 8 8 3 2 4 3
                  1 1 3 3 1 6 6 5 5 4 4 2
                 9 9 9 2 1 9 1 9 2 9 5 7 9
                4 3 3 7 7 9 3 6 1 3 8 8 3 7
               3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
              8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
             8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
            2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
           7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
          9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
         5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
        6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
       2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
      7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
     1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
    2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
   7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
  7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
 5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。假设每块原料的重量都十分精确地平均落在下方的两个金属块上,最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。电子秤的计量单位很小,所以显示的数字很大。
工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?
注意:需要提交的是一个整数,不要填写任何多余的内容。


笨笨有话说:
不断的除2,加到下面,除2,加到下面,… 不会浮点精度溢出吧?
歪歪有话说:
怕除不开还不好办, 把每个数字扩大一定的倍数不就好了。


题目分析

模拟

题目大意:金属块以金字塔的形式堆叠而成,最后一层(30)是一排电子秤.每个物体的重量最终都会均分到下面紧邻的物体上,最终分到电子秤上.

每个方块承受的重量 = 上方与其紧邻的两个方块的承受质量 / 2 + 自身的重量

所以只需要用一个二维数组arr,将每个方块承受的重量存起来,然后从上到下,从左到右,就可以推出最后一排电子秤上的质量了.

说一下精度,由于计算每个木块的承受质量时,原料承受的质量是上一层对应原料的量(质量+承受的质量) / 2.举个栗子,第一层的方块质量为7,均分到最后一层的称上的重量就是 7 / (2^29),相当于就成0了.这肯定影响最后结果的准确性的.所以我们为了提高精度,就要缩小计量单位,把每个方块的质量 * (2^29).这样就可以保证计算过程中不会出现浮点数情况了.(至少得>= 2^29, 也可以更大哦.)

另外,因为本题数据量较大,要使用long long int类型计算.

题目代码

#include
using namespace std;
long long int arr[35][35],max1,min1,num;

int main(){
	for(int i = 1; i <= 29; i++){//初始化arr,重量整体扩大2^29. 因为下面会有29次 /2 
		for(int j = 1; j <= i;j++){
			cin>>num;
			arr[i][j] = num*(1<<29)+arr[i-1][j-1]/2+arr[i-1][j]/2;
		}
	}
	for(int j = 1; j<=30; j++) {
		arr[30][j] = arr[29][j-1]/2+arr[29][j]/2;
		if(j==1){//min1和max1初始化 
			min1 = arr[30][j];
			max1 = arr[30][j];
		}
		if(arr[30][j]>max1){
			max1 = arr[30][j];
		}
		if(arr[30][j] < min1){
			min1 = arr[30][j];
		}
		cout<<arr[30][j]<<" ";
	}
	cout<<endl;
	int bs = 2086458231 / min1;//咱们是按照最低精度(2^29,当然可以更大),这样才可以保证准确无误.所以最后要看下与电子秤相差的倍数.我们的最大值也要进行变换. 
	cout<< max1 * bs <<endl;//72665192664
	return 0;
}

题目答案

72665192664

第四题:方格分割(17分)

题目描述

6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法

2017年第八届C/C++ B组蓝桥杯省赛真题_第1张图片

试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
请提交该整数,不要填写任何多余的内容或说明文字。

题目分析

每一种对称分割都必然要经过中间的点,关于这个点对称,即(3,3). 以该点为起点,向两个相反的方向搜索,直到走到正方形的边缘,则找到一种方案. 然后进行回溯,寻找其他方案. 因为一种分割方法可以转换为四种方向,所以最后答案还要/4.

题目代码

#include
using namespace std;

int arr[10][10],vis[10][10],ans;//arr地图  vis:标记是否走过
int NEXT[4][2] = {//方向数组
	-1,0,//上
	1,0,//下
	0,-1,//左
	0,1//右
};

void dfs(int x,int y) {
	if(x==0||x==6||y==0||y==6) {
		ans++;
		return;
	}
	for(int i = 0; i < 4; i++) {
		int tx = x+NEXT[i][0];
		int ty = y + NEXT[i][1];
		if(tx<0||tx>6||ty<0||ty>6) { //越界
			continue;
		}
		if(!vis[tx][ty]) {
			vis[tx][ty]  = 1;
			vis[6-tx][6-ty] = 1;//相反方向进行搜索. 
			dfs(tx,ty);
			vis[tx][ty]  = 0;//进行回溯,因为要寻找所有的方法
			vis[6-tx][6-ty] = 0;
		}
	}
}

int main() {
	vis[3][3] = 1;//进行标记
	dfs(3,3);
	cout<<ans/4<<endl;//因为一种分割方法最后可以转换为四个方向,所以最后答案还要/4
	return 0;
}

题目答案

509

第七题:日期问题(19分)

题目描述

小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)
输出
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。

样例

02/03/04
2002-03-04
2004-02-03
2004-03-02

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

题目分析

模拟 用scanf控制输入,然后就是模拟三种情况是否符合.最后可以使用set进行排序输出.

题目代码

#include
using namespace std;

int months[13] = {0,31,29, 31,30,31,30,31,31,30,31,30,31 };
set<string> jh;//用于排序,默认从小到大排
void judgeRN(int year){
	if((year%4==0 && year %100!=0) || year % 400 ==0){
		months[2] = 29;//是闰年 
	}else{
		months[2] = 28;
	}
} 

bool check(int& year,int month,int date) {//检查当前这种方案是否符合
	if(year<=59){//修改年为正确的格式 
		year+=2000;
	}else{
		year+=1900;
	}
	if(month<1||month>12){//月 
		return false;
	}
	judgeRN(year);
	if(date<1 || date > months[month]){
		return false;
	}
	
	return true;
	
}

void solve(int year,int month,int date){
	string res = "";
	//判断年月日是否符合条件 
	if(check(year,month,date)){
		//修改month和date到对应的格式
		res += to_string(year) ;
		res+="-";
		if(month < 10){
			res+="0";
		}
		res+= to_string(month);
		res+="-";
		if(date<10){
			res+="0";
		}
		res+=to_string(date);
		jh.insert(res);
	}
}

int main() {
	//年00-99  月:0-12  日:0-31/30/28/29
	int AA,BB,CC;
	scanf("%d/%d/%d",&AA,&BB,&CC);//用C语言的scanf控制输入,非常之精妙!
	solve(AA,BB,CC);//要看清题目,只有是三种情况,不要自作聪明哦. 
//	solve(AA,CC,BB);
//	solve(BB,AA,CC);
//	solve(BB,CC,AA) ;
	solve(CC,AA,BB);
	solve(CC,BB,AA);
	for(set<string>::iterator it = jh.begin(); it != jh.end(); it++){
		cout<<*it<<endl;
	}
	return 0;
}

第八题:包子凑数(21分)

题目描述

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有 N 种蒸笼,其中第 i种蒸笼恰好能放 Ai 个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买 X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 X 个包子。比如一共有 3 种蒸笼,分别能放 3、4 和 5 个包子。当顾客想买 11 个包子时,大叔就会选 2 笼 3 个的再加 1 笼 5 个的(也可能选出 1 笼 3 个的再加 2 笼 4 个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有 3 种蒸笼,分别能放 4、5 和 6 个包子。而顾客想买 7 个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

输入描述

第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)

输出描述

一个整数代表答案。如果凑不出的数目有无限多个,输出 INF。

输入输出样例

示例 1

输入

2
4
5

输出

6

样例说明

凑不出的数目包括:1, 2, 3, 6, 7, 11。

示例 2

输入

2
4
6

输出

INF

样例说明

所有奇数都凑不出来,所以有无限多个

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 256M

题目分析

完全背包+不定方程

不定方程: ax+by=c

  • 假设a,b互质,那么x,y一定有解且有无穷个. 但当x,y>=0,ax+by=c此时导致方程无解c的个数是有限的.
  • 如果a,b不互质,则不能保证有解. 说明a,b不互质的情况下有无穷多个c使得方程无解.

对于a1x1+a2x2+a3x3+⋯+anxn=ca1x1+a2x2+a3x3+⋯+anxn=c

  • 如果a1,a2,a3,⋯,ana1,a2,a3,⋯,an互质,x1,x2,x3,⋯,xnx1,x2,x3,⋯,xn一定有解且有无穷多个。但此时导致方程无解的cc的个数有限,也就是凑不出的包子数目有限。

  • 如果a1,a2,a3,⋯,ana1,a2,a3,⋯,an不互质,那么就有无穷多个c使得方程无解,也就是有无穷多个包子数目凑不出来,所以输出INF。

动规五部曲

  1. 确定dp数组的含义

dp[i]:代表 包子个数为i,是否可以凑出.

  1. 确定递推公式

当前需要的包子数(背包容量),可以由使用当前这种类型的笼子 和 不使用当前类型的笼子组成. 之间是 或 的关系,因为我们求的是是否有这种方案,只有存在就达到我们的目的. 所以递推公式 dp[j] = dp[j] | dp[j-type[i]];

  1. dp数组初始化

根据递推公式,当前dp[j]需要用到之前的dp[j-type[i]].dp[0]代表 包子个数为0时,是否有合适的笼子方案,那就不需要笼子呗,所以dp[0] = true

  1. 确定遍历顺序

根据递推顺序,当前dp[j]需要用到之前的dp[j-type[i]],所以遍历顺序是从左到右 ,因为是完全背包,所以外层for遍历物品,内层for遍历背包大小.

5.举例dp数组

2017年第八届C/C++ B组蓝桥杯省赛真题_第2张图片

题目代码

#include
using namespace std;
const int N = 105;
const int M = 30;

bool dp[M];//dp数组:代表 包子个数为i,是否可以凑出.
int n;
int type[N],g,cnt;//类型数组

//打印dp 
void print(){
	for(int i = 0;i <=M;i++){
		cout<<dp[i]<<" ";
	}
	cout<<endl;
}

int main() {
	cin>>n;
	for(int i = 1; i<= n; i++) {
		cin>>type[i];
		if(i == 1) {
			g = type[i];
		} else {
			g = __gcd(type[i],g);
		}
	}
	if(g>1) {
		cout<<"INF"<<endl;
		return 0;
	}
	//递推dp
	dp[0] = true;//初始化, 
	//print();
	for(int i = 1; i<=n; i++) { //遍历外层物品
		for(int j = type[i]; j <= M;j++){//遍历背包容量 
			dp[j]  = dp[j] | dp[j-type[i]];//状态转移方程   只要有一种方案凑出就好,所以用 | 操作. 
		}
		//print();
	}
	for(int i = 1;i <= M;i++) {
		if(!dp[i]){
			cnt++;
		}
	}
	
	cout<<cnt<<endl; 
	return 0;
}

第九题:分巧克力(23分)

题目描述

儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:

  1. 形状是正方形,边长是整数
  2. 大小相同

例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。

样例输入:

2 10
6 5
5 6

样例输出:

2

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

题目分析

题目的意思是把巧克力分成大小相同的正方形给小朋友,所以需要满足两个条件

  • 巧克力的 大小要尽可能的大
  • 切割后的正方形巧克力的总数要 >= 小朋友人数

假设一块巧克力长为 X,宽为Y,切割成的正方形边长为w,则该个达巧克力可以切割出小正方形的块数是 X/w * Y/w ,巧克力题目已经给出了,我们需要做的事列举可能的切割边长.

巧克力长宽以及个数范围都为 (1 <= Hi, Wi <= 100000 ),所以使用暴力模拟很可能超时. 我们采用二分法来枚举可能出现的巧克力边长,时间复杂度就成了 O ( l o g 2 n ) O(log2n) O(log2n).

题目代码

#include
using namespace std;
const int M = 100005;
int n,k,L,R,ans,mid,arr[M][2];//arr:巧克力数组,存储巧克力的长和宽 

bool judge(int x){//判断用当前边长分割巧克力 方案是否可行 
	int res = 0;
	for(int i = 0;i < n;i++){
		int num1 = arr[i][0]/x;
		int num2 = arr[i][1]/x;
		res+=num1*num2;
	}
	if(res>=k){
		return true;
	}
	return false;
}

int main(){
	cin>>n>>k;
	for(int i = 0; i < n;i++){//初始化巧克力数组 
		cin>>arr[i][0]>>arr[i][1];
	} 
	//二分查找寻找合适位置
	L =  1;
	R = 100000;
	while(L <= R){ //left > right如果最后一步 if left=mid  
		mid = (L+R) / 2;  // 5 6   L = 6  mid = 6 X  R = 5
		if(judge(mid)){
			L = mid+1;
		}else{
			R = mid - 1;
		}
	}
	cout<<R<<endl;//最后不知道输入R还是L可以举个例子,比如 L = 5,R = 6时,judge[5]是true.但是judge[6] 是false的...然后走一下流程就懂了 
	return 0;
}

第十题:k倍区间(25分)

题目描述

给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
输出一个整数,代表K倍区间的数目。

例如,
输入:

5 2
1
2
3
4
5

程序应该输出:

6

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms

题目分析

前缀和+枚举 具体思路和详细后序补上. 先附上某位大佬的代码.

题目代码

#include
using namespace std;
typedef long long ll;
const int N=1e5+5;
int sum[N],cnt[N],n,k;
ll ans;
int main(){
	scanf("%d%d",&n,&k),cnt[0]=1;
	for(int i=1;i<=n;i++){
		scanf("%d",&sum[i]),sum[i]=(sum[i-1]+sum[i])%k;
		ans+=cnt[sum[i]];
		cnt[sum[i]]++;
	}
	printf("%lld\n",ans);
	return 0;
}

备注:由于蓝桥杯不再考察补全代码题型,所以未整理总结其思路


如果有收获!!! 希望老铁们来个三连,点赞、收藏、转发。
创作不易,别忘点个赞,可以让更多的人看到这篇文章,顺便鼓励我写出更好的博客

你可能感兴趣的:(#,蓝桥杯,蓝桥杯,c++,真题)