极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)

“万金油”的String,为什么不好用了?

为什么 String 类型内存开销大?

保存 64 位有符号整数时,String 类型会把它保存为一个 8 字节的 Long 类型整数,这种保存方式通常也叫作 int 编码方式。

当保存的数据中包含字符时,String 类型就会用简单动态字符串(Simple Dynamic String,SDS)结构体来保存,如下图所示:
极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)_第1张图片

  • buf:字节数组,保存实际数据。为了表示字节数组的结束,Redis 会自动在数组最后加一个“\0”,这就会额外占用 1 个字节的开销。
  • len:占 4 个字节,表示 buf 的已用长度。
  • alloc:也占个 4 字节,表示 buf 的实际分配长度,一般大于 len。

对于 String 类型来说,除了 SDS 的额外开销,还有一个来自于 RedisObject 结构体的开销。

Redis 的数据类型有很多,而且,不同数据类型都有些相同的元数据要记录(比如最后一次访问的时间、被引用的次数等),所以,Redis 会用一个 RedisObject 结构体来统一记录这些元数据,同时指向实际数据。

一个 RedisObject 包含了 8 字节的元数据和一个 8 字节指针,这个指针再进一步指向具体数据类型的实际数据所在,例如指向 String 类型的 SDS 结构所在的内存地址,示意图如下:
极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)_第2张图片
为了节省内存空间,Redis 还对 Long 类型整数和 SDS 的内存布局做了专门的设计。

  • 当保存的是 Long 类型整数时,RedisObject 中的指针就直接赋值为整数数据了,这样就不用额外的指针再指向整数了,节省了指针的空间开销。
  • 当保存的是字符串数据,并且字符串小于等于 44 字节时,RedisObject 中的元数据、指针和 SDS 是一块连续的内存区域,这样就可以避免内存碎片。这种布局方式也被称为 embstr 编码方式。
  • 当字符串大于 44 字节时,SDS 的数据量就开始变多了,Redis 就不再把 SDS 和 RedisObject 布局在一起了,而是会给 SDS 分配独立的空间,并用指针指向 SDS 结构。这种布局方式被称为 raw 编码模式。

极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)_第3张图片

案例:保存了 1 亿张图片的信息,用了约 6.4GB 的内存,一个图片 ID 和图片存储对象 ID 的记录平均用了 64 字节。

因为 10 位数的图片 ID 和图片存储对象 ID 是 Long 类型整数,所以可以直接用 int 编码的 RedisObject 保存。每个 int 编码的 RedisObject 元数据部分占 8 字节,指针部分被直接赋值为 8 字节的整数了。此时,每个 ID 会使用 16 字节,加起来一共是 32 字节。但是,另外的 32 字节去哪儿了呢?

Redis 会使用一个全局哈希表保存所有键值对,哈希表的每一项是一个 dictEntry 的结构体,用来指向一个键值对。dictEntry 结构中有三个 8 字节的指针,分别指向 key、value 以及下一个 dictEntry,三个指针共 24 字节,如下图所示:

极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)_第4张图片
但是,这三个指针只有 24 字节,为什么会占用了 32 字节呢?这就要提到 Redis 使用的内存分配库 jemalloc 了。

jemalloc 在分配内存时,会根据我们申请的字节数 N,找一个比 N 大,但是最接近 N 的 2 的幂次数作为分配的空间,这样可以减少频繁分配的次数。

举个例子。如果你申请 6 字节空间,jemalloc 实际会分配 8 字节空间;如果你申请 24 字节空间,jemalloc 则会分配 32 字节。所以,在我们刚刚说的场景里,dictEntry 结构就占用了 32 字节。

好了,到这儿,你应该就能理解,为什么用 String 类型保存图片 ID 和图片存储对象 ID 时需要用 64 个字节了。

用什么数据结构可以节省内存?

Redis 有一种底层数据结构,叫压缩列表(ziplist),这是一种非常节省内存的结构。

我们先回顾下压缩列表的构成。表头有三个字段 zlbytes、zltail 和 zllen,分别表示列表长度、列表尾的偏移量,以及列表中的 entry 个数。压缩列表尾还有一个 zlend,表示列表结束。

极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)_第5张图片
压缩列表之所以能节省内存,就在于它是用一系列连续的 entry 保存数据。每个 entry 的元数据包括下面几部分。

  • prev_len,表示前一个 entry 的长度。prev_len 有两种取值情况:1 字节或 5 字节。取值 1 字节时,表示上一个 entry 的长度小于 254 字节。虽然 1 字节的值能表示的数值范围是 0 到 255,但是压缩列表中 zlend 的取值默认是 255,因此,就默认用 255 表示整个压缩列表的结束,其他表示长度的地方就不能再用 255 这个值了。所以,当上一个 entry 长度小于 254 字节时,prev_len 取值为 1 字节,否则,就取值为 5 字节。
  • len:表示自身长度,4 字节;
  • encoding:表示编码方式,1 字节;
  • content:保存实际数据。

如何用集合类型保存单值的键值对?

Hash 类型底层结构什么时候使用压缩列表,什么时候使用哈希表呢?其实,Hash 类型设置了用压缩列表保存数据时的两个阈值,一旦超过了阈值,Hash 类型就会用哈希表来保存数据了。

有一亿个keys要统计,应该用哪种集合?

4 种统计模式

  • 聚合统计
  • 排序统计
  • 二值状态统计
  • 基数统计
    极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)_第6张图片

GEO是什么?还可以定义新的数据类型吗?

如何在Redis中保存时间序列数据?

时间序列数据的读写特点

这种数据的写入特点很简单,就是插入数据快,这就要求我们选择的数据类型,在进行数据插入时,复杂度要低,尽量不要阻塞。

基于 Hash 和 Sorted Set 保存时间序列数据

Hash 和 Sorted Set 组合的方式有一个明显的好处:它们是 Redis 内在的数据类型,代码成熟和性能稳定。所以,基于这两个数据类型保存时间序列数据,系统稳定性是可以预期的。

不过,在前面学习的场景中,我们都是使用一个数据类型来存取数据,那么,为什么保存时间序列数据,要同时使用这两种类型?这是我们要回答的第一个问题

关于 Hash 类型,我们都知道,它有一个特点是,可以实现对单键的快速查询。这就满足了时间序列数据的单键查询需求。我们可以把时间戳作为 Hash 集合的 key,把记录的设备状态值作为 Hash 集合的 value。

Hash 类型有个短板:它并不支持对数据进行范围查询。 需要利用 Sorted Set

也就是我们要解答的第二个问题:如何保证写入 Hash 和 Sorted Set 是一个原子性的操作呢?

两个命令:

  • MULTI 命令:表示一系列原子性操作的开始。收到这个命令后,Redis 就知道,接下来再收到的命令需要放到一个内部队列中,后续一起执行,保证原子性。
  • EXEC 命令:表示一系列原子性操作的结束。一旦 Redis 收到了这个命令,就表示所有要保证原子性的命令操作都已经发送完成了。此时,Redis 开始执行刚才放到内部队列中的所有命令操作。

消息队列的考验:Redis有哪些解决方案?

基于 List 的消息队列解决方案

**消息队列在存取消息时,必须要满足三个需求:

  • 消息保序
  • 处理重复的消息
  • 保证消息可靠性。

消息保序

LPUSH、RPOP
在消费者读取数据时,有一个潜在的性能风险点。

在生产者往 List 中写入数据时,List 并不会主动地通知消费者有新消息写入,如果消费者想要及时处理消息,就需要在程序中不停地调用 RPOP 命令(比如使用一个 while(1) 循环)。如果有新消息写入,RPOP 命令就会返回结果,否则,RPOP 命令返回空值,再继续循环。

所以,即使没有新消息写入 List,消费者也要不停地调用 RPOP 命令,这就会导致消费者程序的 CPU 一直消耗在执行 RPOP 命令上,带来不必要的性能损失。

为了解决这个问题,Redis 提供了 BRPOP 命令。BRPOP 命令也称为阻塞式读取,客户端在没有读到队列数据时,自动阻塞,直到有新的数据写入队列,再开始读取新数据。和消费者程序自己不停地调用 RPOP 命令相比,这种方式能节省 CPU 开销。

处理重复的消息

这里其实有一个要求:消费者程序本身能对重复消息进行判断。也就是幂等性处理。

保证消息可靠性

List 保证消息可靠性的是依靠 BRPOPLPUSH 这个命令,这个命令的作用是让消费者程序从一个 List 中读取消息,同时,Redis 会把这个消息再插入到另一个 List(可以叫作备份 List)留存。这样一来,如果消费者程序读了消息但没能正常处理,等它重启后,就可以从备份 List 中重新读取消息并进行处理了。
极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)_第7张图片

生产者消息发送很快,而消费者处理消息的速度比较慢,这就导致 List 中的消息越积越多,给 Redis 的内存带来很大压力。Redis 从 5.0 版本开始提供的 Streams 数据类型。和 List 相比,Streams 同样能够满足消息队列的三大需求。而且,它还支持消费组形式的消息读取。

基于 Streams 的消息队列解决方案

它提供了丰富的消息队列操作命令:

  • XADD:插入消息,保证有序,可以自动生成全局唯一 ID;
  • XREAD:用于读取消息,可以按 ID 读取数据;
  • XREADGROUP:按消费组形式读取消息;
  • XPENDING 和 XACK:XPENDING 命令可以用来查询每个消费组内所有消费者已读取但尚未确认的消息,而 XACK 命令用于向消息队列确认消息处理已完成。

极客时间 Redis核心技术与实战 笔记(实践篇 数据结构)_第8张图片

你可能感兴趣的:(#,Redis)