- response.split(“\n“)[0].strip() 是什么
ZhangJiQun&MXP
教学2021AIpythonpython机器学习人工智能语言模型自然语言处理
response.split(“\n”)[0].strip()是什么returnresponse.split("\n")[0].strip()这行代码在Python中通常用于对字符串进行处理并返回处理后的结果response.split("\n"):split()是Python字符串对象的一个方法,用于根据指定的分隔符将字符串拆分成一个列表。在这行代码中,"\n"作为分隔符,表示按照换行符来拆分字
- PyTorch中 item()、tolist()使用详解和实战示例
点云SLAM
PyTorch深度学习pytorch人工智能python深度学习张量的操作itemtolist
在PyTorch中,.item()和.tolist()是两个常用于从Tensor中提取Python原生数据的方法,尤其在调试、日志记录或将结果传给非张量库时非常有用。下面是它们的详解与代码示例。1..item()方法用途:将仅包含一个元素的张量(即标量张量)转换为对应的Python原生数据类型(float,int,等)。限制:只能用于只包含一个元素的Tensor,否则会报错。示例代码:import
- jdk17+springboot3项目加密部署
最近项目需要在第三方服务器部署,由于没有交付源码。所以需要将项目加密后再部署。网上找了一圈,发现xjar这个开源项目,可以将代码加密后进行部署。看了下正是我需要的。于是按照文档打包加密,但启动的时候居然报错。这个结果结果有点难受!xjar不支持springboot3.!翻了翻issue,看到有个老哥新拉的分支支持springboot3。于是clone新分支代码。继续打包,加密,启动。这下就成功启动
- 【NWFSP问题】基于中华穿山甲算法CPO求解零等待流水车间调度问题NWFSP研究(Matlab代码实现)
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述1.引言2.理论基础2.1中华穿山甲算法(CPO)核心原理2.2NWFSP数学模型3.CPO-NWFSP求解框架设计3.1编码与解码3.2离散化位置更新3.3目标函数适配4.实验设计与性能分析4.1实验设置4.2结果分析4.3敏感性分析5.结论与展望
- 【机器学习笔记 Ⅱ】11 决策树模型
巴伦是只猫
机器学习机器学习笔记决策树
决策树模型(DecisionTree)详解决策树是一种树形结构的监督学习模型,通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。1.核心概念节点类型:根节点:起始问题(最佳特征划分点)。内部节点:中间决策步骤(特征判断)。叶节点:最终预测结果(类别或数值)。分支:对应特征的取值或条件判断(如“年龄≥30?”)。2.构建决策树的关键步骤(1)
- 告别合规“人海战术”,奇富科技Lumo AI合规助手让效率狂飙20倍!
CSDN资讯
人工智能科技LumoAI
6月20日,国家金融监督管理总局发布《商业银行市场风险管理办法》,银行业随即掀起了一场监管解读与内部宣导的热潮,对照新规,企业内部逐一梳理,再逐一落实。面对不断更新的政策要求和堆积如山的协议审查,传统人工筛查方式显得力不从心,效率低下且漏洞百出,企业合规人力匮乏,全流程合规SOP执行难、合规自查覆盖率低、员工与客户异常行为发现滞后等问题如同高悬的“达摩克利斯之剑”,让机构们喘不过气来。奇富科技精准
- STM32(X)精简库解读CMSIS
概述CMSIS全称为CommonMicrocontrollerSoftwareInterfaceStandard(通用微控制器软件接口标准),点此参考官方解读精简库CMSIS文件夹结构core:CMSISCortex-M3核心外设访问层源文件startup:启动文件stm32f10x.h:CMSISCortex-M3设备外设访问层头文件。这个文件包含了所有外设寄存器的定义,位定义和内存映射的STM
- 数据结构之栈实验
lannnn_
学习记录数据结构c语言栈
栈实验实验目的实验环境实验要求实验内容源代码运行结果实验目的掌握栈这种数据结构特性及其主要存储结构,并能在现实生活中灵活运用。实验环境CodeBlocks实验要求1.熟悉c语言的语法知识;2.掌握栈的顺序存储结构—顺序栈的定义、构造、获得栈顶元素、入栈、出栈等基本操作;实验内容完成栈的定义、构造、获得栈顶元素、进栈、出栈等函数的编写。要求在主函数中实现对以上操作的调用,编写一个算法判断给定的字符向
- 在 Dify 平台中集成上下文工程技术
由数入道
人工智能数据库大数据人工智能软件工程dify
1.提升LLM问答准确率的上下文构建与提示策略大语言模型在开放领域问答中常面临幻觉和知识过时等问题。为提高回答准确率,上下文工程的关键是在提示中注入相关背景知识与指导。具体策略包括:检索增强(RAG):通过从知识库中检索相关内容并将其纳入提示,可以显著提升回答的准确性和可信度。Dify提供了知识检索节点,支持向量数据库存储外部知识,并将检索结果通过上下文变量注入LLM提示中。例如,在知识库问答应用
- 《北京市加快推动“人工智能+医药健康“创新发展行动计划(2025-2027年)》深度解读
引言随着新一轮科技革命和产业变革的深入推进,人工智能技术与医药健康的深度融合已成为全球科技创新的重要方向。北京市于2025年7月正式发布《北京市加快推动"人工智能+医药健康"创新发展行动计划(2025-2027年)》,旨在充分发挥北京在人工智能技术策源、头部医疗资源汇聚、健康数据高度富集等方面的突出优势,构建形成"人工智能+医药健康"创新和应用并举的产业生态体系,打造具有国际影响力的创新策源地、应
- go-micro教程 — 第一章 快速入门
go-micro教程—第一章快速入门1参考文档2所需依赖3安装micro3.1GoGet方式安装:3.2二进制版本3.3Docker镜像4运行micro服务4.1启动microserver服务4.2登录Micro4.3运行helloworld4.4查看运行结果4.4.1查看正在运行的服务的状态4.4.2查看服务的日志5调用服务5.1查看服务节点5.2使用API方式调用5.3客户端方式调用6创建服务
- element目录树组件el-tree使用相关笔记
JoyceLeee
笔记vue.jsjavascriptelementui
文章目录默认配置懒加载每一级分页懒加载递归处理数据递归遍历树级结构,进行字段映射一维数组处理为树结构默认选中并展开特定节点初始化的需求场景切换tab后的需求场景禁止点击事件搜索本地搜索搜索后滚动定位结果添加图标方法一:通过伪类的background属性方法二:通过img标签引入图片修改选中的高亮(图标和颜色)选中时图标切换文字和背景的高亮可编辑树点击展开后回调点击节点图标切换显示(包含一键切换全部
- PiX4Dmatic1.76 摄影测量建模软件
查尔斯编程
摄影测量软件工程
PIX4Dmatic摄影测量软件是一款非常不错的摄影测量软件,这款软件用于廊道和大比例尺测绘的下一代摄影测量软件,PIX4Dmatic也支持常用的垂直坐标系及其相应的大地水准面。PIX4Dmatic(摄影测量软件)是一款非常不错的摄影测量软件,这款软件用于廊道和大比例尺测绘的下一代摄影测量软件,PIX4Dmatic也支持,常用的垂直坐标系及其相应的大地水准面。功能介绍1、更大的数据集,准确的结果P
- 荷兰赌悖论:概率哲学中的理性陷阱与信念度之谜
大千AI助手
人工智能Python#OTHER人工智能数据挖掘机器学习算法概率论荷兰赌悖论悖论
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!1.概念起源与核心定义荷兰赌(DutchBook)源于赌博策略中的一种风险设计:若参与者的信念度(主观概率)不满足概率公理,则存在一组赌注组合,无论事件结果如何,参与者必然亏损。该理论由弗兰克·拉姆齐(FrankRamsey)和布鲁诺·德·菲内蒂(Br
- MySQL 的 B+ 树中查询数据的全过程
Chen-Edward
mysql数据库
是否是否是否接收SQL查询解析SQL,生成语法树优化器生成执行计划是否使用B+树索引?加载B+树根节点全表扫描遍历非叶子节点定位叶子节点查找目标键值找到目标键?获取数据返回空结果是否二级索引?通过主键回表直接获取整行数据组装结果集返回结果给客户端注意事项mysql中的叶子节点默认是16KB,存储的不只是一条数据,数据的多少是16kB/每条数据大约的大小从上图可以知晓,叶子节点有页目录结构(非叶子节
- Coze智能体开发:什么是提示词及其编写建议
王国平
CozeAIAgent智能体开发人工智能大数据语言模型python开发语言
提示词(Prompt)是AIAgent的核心,它决定了模型生成结果的质量和准确性。提示词不仅影响输出,还决定了模型对输入信息的理解深度。通过科学的提示词设计,开发者能高效引导模型生成符合预期的高质量输出。基础概念提示词提示词(Prompt)是用户在与模型或智能系统互动时输入的指令或文本,用来引导系统生成回应或执行特定任务。它可以是问题、命令或描述性文字,帮助系统理解用户的意图并提供相应的结果。提示
- 深入理解数据库领域的 SQL 索引失效问题
数据库管理艺术
数据库sqlai
深入理解数据库领域的SQL索引失效问题关键词:SQL索引、索引失效、查询优化、执行计划、数据库性能、B+树、索引选择性摘要:本文深入探讨SQL索引失效的核心问题,分析导致索引失效的8种典型场景及其背后的原理机制。通过B+树索引结构解析、执行计划解读和实际案例演示,帮助开发者全面理解索引失效的本质原因。文章提供详细的优化方案和最佳实践,包括索引设计原则、SQL编写规范以及性能调优技巧,并附有MySQ
- 搜索架构中的NLP技术:提升搜索准确性的关键
搜索引擎技术
架构自然语言处理人工智能ai
搜索架构中的NLP技术:提升搜索准确性的关键关键词:搜索架构、NLP技术、查询理解、语义搜索、相关性排序、意图识别、BERT模型摘要:本文将深入探讨现代搜索架构中NLP技术的核心应用,从查询理解到结果排序的全流程,揭示NLP如何提升搜索准确性。我们将通过生动的比喻解释复杂概念,分析关键技术原理,并提供实际代码示例,帮助读者全面理解搜索系统背后的NLP魔法。背景介绍目的和范围本文旨在解析NLP技术在
- 【python实用小脚本-128】基于 Python 的 Hacker News 爬虫工具:自动化抓取新闻数据
Kyln.Wu
Pythonpython爬虫自动化
引言在技术社区中,HackerNews是一个汇聚最新技术文章和讨论的热门平台。许多开发者和技术爱好者依赖它来获取行业动态和前沿资讯。然而,手动浏览和筛选这些文章可能耗时且低效。本文将介绍一个基于Python的HackerNews爬虫工具,它能够自动化地从HackerNews网站抓取最新文章,并将结果保存为CSV文件。该工具主要利用了Python的requests、BeautifulSoup和csv
- PostgreSQL 使用 OFFSET 分页时的数据一致性问题
心上之秋
在PostgreSQL中,使用OFFSET和LIMIT实现分页查询是一种常见的方法。然而,当分页查询执行时,如果有新数据插入或已有数据删除,可能会导致分页结果出现错乱或数据丢失的问题。一、OFFSET分页的工作原理OFFSET分页的基本语法如下:登录后复制SELECT*FROMtable_nameORDERBYcolumn_nameLIMITpage_sizeOFFSET(page_number-
- 火狐浏览器如何设置:在任务栏中的搜索栏点击搜索的箭头后,网页在新标签打开
wh3933
edge浏览器c4前端
要在火狐浏览器中设置搜索结果在新标签页中打开,请按照以下步骤操作:打开火狐浏览器。在地址栏中输入about:config并按下回车键。可能会出现一个警告页面,点击“接受风险并继续”。在搜索栏中输入browser.search.openintab。找到browser.search.openintab这一项,双击它将值更改为true。
- Python 基础入门第十三讲 魔法方法补充、单例模式、reflect反射(getattr、hasattr、__import__())
第十三讲一、特殊成员和魔法方法在之前的课程中已经学习过如__init__、__str__、__dir__等魔法方法,现补充一些常用的魔法方法:1.__doc__魔法方法该魔法方法的作用为打印类的说明文档,举个例子:print(str().__doc__)###输出结果为:str(object='')->strstr(bytes_or_buffer[,encoding[,errors]])->str
- Oracle数据库中快照的使用
weixin_33873846
数据库
oracle数据库的快照是一个表,它包含有对一个本地或远程数据库上一个或多个表或视图的查询的结果。下面以我在开发襄樊市电信局170话费催缴系统中使用快照加快查询速度的实现过程为例来说明快照的使用方法:oracle数据库的快照是一个表,它包含有对一个本地或远程数据库上一个或多个表或视图的查询的结果。正因为快照是一个主表的查询子集,使用快照可以加快数据的查询速度;在保持不同数据库中的两个表的同步中,利
- python实现多元线性回归算法 (附完整源码)
源代码大师
python算法完整教程算法python线性回归
python实现多元线性回归算法1.使用正规方程实现多元线性回归代码说明运行结果示例2.使用梯度下降法实现多元线性回归代码说明运行结果示例进一步优化与注意事项下面是使用Python从头实现多元线性回归算法的完整源码。这个实现利用了numpy进行矩阵运算,并展示了如何训练模型、进行预测以及评估模型性能。为了更全面,代码中还包含了一个使用梯度下降法(GradientDescent)优化参数的实现。多元
- 计算三维空间中AOA定位的 CRLB(Cramér–Rao 下界,克拉美罗下界)公式与MATLAB例程
MATLAB卡尔曼
MATLAB定位程序与详解matlab机器学习定位导航
文章目录适用条件✅符号定义✅CRLB计算基本框架1.方向向量定义2.雅可比矩阵(Jacobian)3.Fisher信息矩阵(FIM)4.Cramér–RaoLowerBound✅例程中文注释版`aoa_crlb_3d_demo.m`✅运行输出结果在三维空间中,利用AOA(AngleofArrival,到达角度)测量信息进行目标定位时,CRLB(Cramér–RaoLowerBound)表示该测量系
- SIMULINK开发项目实例 1000 例专栏之第663例:基于simulink的SVPWM技术的研究的三相电压源逆变器建模仿真
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏matlabsimulink
目录准备工作步骤详解第一步:创建Simulink项目第二步:选择并添加合适的库组件第三步:构建基本的三相电压源逆变器模型第四步:实现SVPWM算法第五步:仿真与调试第六步:结果分析第七步:优化与改进第八步:导出与部署总结三相电压源逆变器(VoltageSourceInverter,VSI)在电力电子中是将直流电转换为交流电的一种重要设备,广泛应用于电机驱动、不间断电源(UPS)、可再生能源系统等领
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- Java+Python智能化云盘【Day3】
关沐吖
Java+PythonAi智能云盘项目开发专栏javapython开发语言
提示词工程Prompt简介:大模型必备Prompt提示词工程讲解什么是PromptEngineering提示词工程通过特定格式的文本输入引导AI模型生成期望输出的技术,明确地告诉模型你想要解决的问题或完成的任务也是大语言模型理解用户需求并生成相关、准确回答或内容的基础类比:给Java程序员的任务需求文档(越清晰明确,结果越符合预期)为什么需要学习?大模型就是你的员工,你可以有多个助手,OpenAI
- oracle 将查询结果中的一列合并为一个字符串
zengzehui
oracleuserpath
selectmax(sys_connect_by_path(username,';'))from(selectu.username,rownumrofromt_base_useru,t_base_role_userruwhereu.id=ru.userid)newtabstartwithnewtab.ro=1connectbypriornewtab.ro=newtab.ro-1注:t_base_u
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。