okHttp拦截器分析(二)

image.png

继续上一篇的okHttp拦截器分析(一),下一个要分析的拦截器是CacheInterceptor,听名字就知道跟缓存有关,在这之前,我们先来看看一张Http缓存的流程图,网络上找到的:


image.png

当发送相同请求的时候,先判断缓存是否过期,如果过期了,该请求会携带If-Modified-Since和If-None-Match,通过这两个值,判断本地资源是否发生变化,没有变化直接获取缓存并返回code 304。
注:
Last-Modified:服务器返回给客户端的头部信息,表示资源的最后修改时间(ETag 比较的是响应内容的特征值,而Last-Modified 比较的是响应内容的修改时间)。

很好,接下来我们来看看okHttp里面的缓存拦截器关键实现:

/** Serves requests from the cache and writes responses to the cache. */
public final class CacheInterceptor implements Interceptor {
@Override public Response intercept(Chain chain) throws IOException {
    //获取到缓存
    Response cacheCandidate = cache != null
        ? cache.get(chain.request())
        : null;

    long now = System.currentTimeMillis();
    
    //这个类有点叼,request和缓存的response都是CacheStrategy类返回的,也许这个CacheStrategy就是管理者吧,决定到底使用缓存还是进行网络请求
    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse;

    if (cache != null) {
      cache.trackResponse(strategy);
    }
    
    //缓存不能使用,关闭
    if (cacheCandidate != null && cacheResponse == null) {
      closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
    }

    // If we're forbidden from using the network and the cache is insufficient, fail.
    //  1- 如果无网络访问(请求体networkRequest为null,内部的url也是null),又无缓存,返回504错误
    if (networkRequest == null && cacheResponse == null) {
      return new Response.Builder()
          .request(chain.request())
          .protocol(Protocol.HTTP_1_1)
          .code(504)
          .message("Unsatisfiable Request (only-if-cached)")
          .body(Util.EMPTY_RESPONSE)
          .sentRequestAtMillis(-1L)
          .receivedResponseAtMillis(System.currentTimeMillis())
          .build();
    }

    // If we don't need the network, we're done.
    //   2 - 如果不需要网络请求,直接返回缓存数据
    if (networkRequest == null) {
      return cacheResponse.newBuilder()
          .cacheResponse(stripBody(cacheResponse))
          .build();
    }

    Response networkResponse = null;
    try {
     // 3 - 进行网络请求,得到 网络返回数据
      networkResponse = chain.proceed(networkRequest);
    } finally {
      // If we're crashing on I/O or otherwise, don't leak the cache body.
      if (networkResponse == null && cacheCandidate != null) {
        closeQuietly(cacheCandidate.body());
      }
    }

    // If we have a cache response too, then we're doing a conditional get.
    //4 - HTTP_NOT_MODIFIED 标识缓存有效,网络请求返回数据和缓存数据合并,并更新缓存
    if (cacheResponse != null) {
      if (networkResponse.code() == HTTP_NOT_MODIFIED) {
        Response response = cacheResponse.newBuilder()
            .headers(combine(cacheResponse.headers(), networkResponse.headers()))
            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
        networkResponse.body().close();

        // Update the cache after combining headers but before stripping the
        // Content-Encoding header (as performed by initContentStream()).
        cache.trackConditionalCacheHit();
        cache.update(cacheResponse, response);
        return response;
      } else {
        closeQuietly(cacheResponse.body());
      }
    }

    Response response = networkResponse.newBuilder()
        .cacheResponse(stripBody(cacheResponse))
        .networkResponse(stripBody(networkResponse))
        .build();

    if (cache != null) { //判断是否支持缓存
      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
        // Offer this request to the cache.
        CacheRequest cacheRequest = cache.put(response);
        //5- 判断有无缓存,写入缓存
        return cacheWritingResponse(cacheRequest, response);
      }

      if (HttpMethod.invalidatesCache(networkRequest.method())) {
        try {
          cache.remove(networkRequest);
        } catch (IOException ignored) {
          // The cache cannot be written.
        }
      }
    }

    return response;
  }

}

上面关键代码,我们来总结下执行流程:
1 如果无网络访问,又无缓存,返回504错误,执行2
2 如果不需要网络请求,直接返回缓存数据,否则 执行3
3 进行网络请求,得到网络返回数据,执行4
4 HTTP_NOT_MODIFIED 标识缓存有效,网络请求返回数据和缓存数据合并,并更新缓存,否则 执行5
5 判断有无缓存,写入缓存并返回response


image.png

很好,CacheInterceptor分析完了,喝杯茶压压惊。

接下来 我们来看看ConnectInterceptor,字如其名,是一个跟连接有关的拦截器,我们看看关键代码:

/** Opens a connection to the target server and proceeds to the next interceptor. */
public final class ConnectInterceptor implements Interceptor {
   @Override public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();
    StreamAllocation streamAllocation = realChain.streamAllocation();

    // We need the network to satisfy this request. Possibly for validating a conditional GET.
    boolean doExtensiveHealthChecks = !request.method().equals("GET");
    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
    RealConnection connection = streamAllocation.connection();

    return realChain.proceed(request, streamAllocation, httpCodec, connection);
  }
}

代码看的去很少,我们只需要关注下面两行:

HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
RealConnection connection = streamAllocation.connection();

不管是httpCodec,还是connection,都是由streamAllocation完成,我们来看看newStream()里面做了什么:

public HttpCodec newStream(
      OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
    int connectTimeout = chain.connectTimeoutMillis();
    int readTimeout = chain.readTimeoutMillis();
    int writeTimeout = chain.writeTimeoutMillis();
    int pingIntervalMillis = client.pingIntervalMillis();
    boolean connectionRetryEnabled = client.retryOnConnectionFailure();

    try {
      RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
          writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
      HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);

      synchronized (connectionPool) {
        codec = resultCodec;
        return resultCodec;
      }
    } catch (IOException e) {
      throw new RouteException(e);
    }
  }

......
 public HttpCodec newCodec(OkHttpClient client, Interceptor.Chain chain,
      StreamAllocation streamAllocation) throws SocketException {
    if (http2Connection != null) {
      return new Http2Codec(client, chain, streamAllocation, http2Connection);
    } else {
      socket.setSoTimeout(chain.readTimeoutMillis());
      source.timeout().timeout(chain.readTimeoutMillis(), MILLISECONDS);
      sink.timeout().timeout(chain.writeTimeoutMillis(), MILLISECONDS);
      return new Http1Codec(client, streamAllocation, source, sink);
    }
  }

findHealthyConnection ,是找到一个可用连接的意思,重点就在这,通过找到的可用连接newCodec(),返回了HttpCodec的实现类Http1Codec对象。我们去看看findHealthyConnection(),看看如何找到可用连接:

private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
      int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
      boolean doExtensiveHealthChecks) throws IOException {
    while (true) {
      RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
          pingIntervalMillis, connectionRetryEnabled);

      // If this is a brand new connection, we can skip the extensive health checks.
      synchronized (connectionPool) {
        if (candidate.successCount == 0) {
          return candidate;
        }
      }
      // Do a (potentially slow) check to confirm that the pooled connection is still good. If it
      // isn't, take it out of the pool and start again.
      if (!candidate.isHealthy(doExtensiveHealthChecks)) {//判断连接是否可用
        noNewStreams();//连接不可用,移除
        continue;//不可用,就一直持续
      }
 
      return candidate;
    }
  }

哇,这个方法用了死循环,如果找不到可用连接,就一直卡在这里,再来看看findConnection()关键方法,有点长,分析都在源码里面的注释上:

 /**
   * Returns a connection to host a new stream. This prefers the existing connection if it exists,
   * then the pool, finally building a new connection.
   */
  private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
      int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
    boolean foundPooledConnection = false;
    RealConnection result = null;
    Route selectedRoute = null;
    Connection releasedConnection;
    Socket toClose;
    
    //异常情况,直接抛出
    synchronized (connectionPool) {
      if (released) throw new IllegalStateException("released");
      if (codec != null) throw new IllegalStateException("codec != null");
      if (canceled) throw new IOException("Canceled");

      // Attempt to use an already-allocated connection. We need to be careful here because our
      // already-allocated connection may have been restricted from creating new streams.
      releasedConnection = this.connection;
      toClose = releaseIfNoNewStreams();
      if (this.connection != null) { //
      //经过releaseIfNoNewStreams,connection不为null,则连接是可用的
        // We had an already-allocated connection and it's good.
        result = this.connection;
        releasedConnection = null;
      }
      if (!reportedAcquired) {
        // If the connection was never reported acquired, don't report it as released!
        releasedConnection = null;
      }
      
      //无可用连接,去连接池connectionPool中获取
      if (result == null) {
        // Attempt to get a connection from the pool.
        Internal.instance.get(connectionPool, address, this, null);
        if (connection != null) {
          foundPooledConnection = true;
          result = connection;
        } else {
          selectedRoute = route;
        }
      }
    }
    closeQuietly(toClose);

    if (releasedConnection != null) {
      eventListener.connectionReleased(call, releasedConnection);
    }
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result);
    }
    if (result != null) {//上面通过去连接池中找,如果result不为null,说明找到了可用连接
      // If we found an already-allocated or pooled connection, we're done.
      return result;
    }

    // If we need a route selection, make one. This is a blocking operation.
    //如果在连接池中也没找到可用连接, 就需要一个路由信息,这是一个阻塞操作
    boolean newRouteSelection = false;
    if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
      newRouteSelection = true;
      routeSelection = routeSelector.next();
    }

    synchronized (connectionPool) {
      if (canceled) throw new IOException("Canceled");
      if (newRouteSelection) {
        // Now that we have a set of IP addresses, make another attempt at getting a connection from
        // the pool. This could match due to connection coalescing.
      //提供address,再次从连接池中获取连接
        List routes = routeSelection.getAll();
        for (int i = 0, size = routes.size(); i < size; i++) {
          Route route = routes.get(i);
          Internal.instance.get(connectionPool, address, this, route);
          if (connection != null) {
            foundPooledConnection = true;
            result = connection;
            this.route = route;
            break;
          }
        }
      }
       //提供路路由信息,然后进行查找可用链接,还是没有找到可用链接,就需要生成一个新的连接
      if (!foundPooledConnection) {
        if (selectedRoute == null) {
          selectedRoute = routeSelection.next();
        }

        // Create a connection and assign it to this allocation immediately. This makes it possible
        // for an asynchronous cancel() to interrupt the handshake we're about to do.
        route = selectedRoute;
        refusedStreamCount = 0;
        result = new RealConnection(connectionPool, selectedRoute);
        acquire(result, false);
      }
    }

    // If we found a pooled connection on the 2nd time around, we're done.
    //如果连接是从连接池中找到的,直接拿出来使用
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result);
      return result;
    }

    // Do TCP + TLS handshakes. This is a blocking operation.
    result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
        connectionRetryEnabled, call, eventListener);
    routeDatabase().connected(result.route());

    Socket socket = null;
    synchronized (connectionPool) {
      reportedAcquired = true;

      // Pool the connection.
     //将新生成的连接放入连接池中
      Internal.instance.put(connectionPool, result);

      // If another multiplexed connection to the same address was created concurrently, then
      // release this connection and acquire that one.
      //如果是一个http2连接,http2连接应具有多路复用特性,
      if (result.isMultiplexed()) {
        socket = Internal.instance.deduplicate(connectionPool, address, this);
        result = connection;
      }
    }
    closeQuietly(socket);

    eventListener.connectionAcquired(call, result);
    return result;
  }

我们来回顾下上面的获取可用连接的流程:
先检测链接是否可用:
a 可用的话直接返回,结束流程。
b 不可用,先去 连接池中查找:
连接池找到:结束流程。
未找到:提供address,再次去连接池中查找。如果找到了直接结束流程,如果没找到:生成一个新的连接,并且将这个新的链接加入到连接池,然后返回这个新链接。

ConnectInterceptor 分析结束。

接下来是CallServerInterceptor,这个拦截器用来完成最终的请求执行,这里面涉及到OKio这个库,假装它就是一个httpUrlConnection就行了,由于是另外一个库,这里就不分析了。

你可能感兴趣的:(okHttp拦截器分析(二))