高级Java jvm全部就在这里了

jvm架构设计图:

jvm.png

1、jvm五大区域图

image.png

1.1 程序计数器
内存空间小,线程私有。字节码解释器工作是就是通过改变这个计数器的值来选取下一条需要执行指令的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖计数器完成
如果线程正在执行一个 Java 方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是 Native 方法,这个计数器的值则为 (Undefined)。此内存区域是唯一一个在 Java 虚拟机规范中没有规定任何 OutOfMemoryError 情况的区域。
1.2 Java 虚拟机栈
线程私有,生命周期和线程一致。描述的是 Java 方法执行的内存模型:每个方法在执行时都会床创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法从调用直至执行结束,就对应着一个栈帧从虚拟机栈中入栈到出栈的过程。
局部变量表:存放了编译期可知的各种基本类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference 类型)和 returnAddress 类型(指向了一条字节码指令的地址)

StackOverflowError:线程请求的栈深度大于虚拟机所允许的深度。
OutOfMemoryError:如果虚拟机栈可以动态扩展,而扩展时无法申请到足够的内存。
1.3 本地方法栈
区别于 Java 虚拟机栈的是,Java 虚拟机栈为虚拟机执行 Java 方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。也会有 StackOverflowError 和 OutOfMemoryError 异常。
1.4 Java 堆
对于绝大多数应用来说,这块区域是 JVM 所管理的内存中最大的一块。线程共享,主要是存放对象实例和数组。内部会划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer, TLAB)。可以位于物理上不连续的空间,但是逻辑上要连续。
OutOfMemoryError:如果堆中没有内存完成实例分配,并且堆也无法再扩展时,抛出该异常。
1.5 方法区
属于共享内存区域,存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
总结每个区域存放的 内容是:


image.png

1.6 运行时常量池
属于方法区一部分,用于存放编译期生成的各种字面量和符号引用。编译器和运行期(String 的 intern() )都可以将常量放入池中。内存有限,无法申请时抛出 OutOfMemoryError。
1.7 直接内存
非虚拟机运行时数据区的部分

  1. 垃圾回收算法
    2.1 标记 —— 清除算法
    直接标记清除就可。
    两个不足:

效率不高
空间会产生大量碎片
2.2 复制算法
把空间分成两块,每次只对其中一块进行 GC。当这块内存使用完时,就将还存活的对象复制到另一块上面。
解决前一种方法的不足,但是会造成空间利用率低下。因为大多数新生代对象都不会熬过第一次 GC。所以没必要 1 : 1 划分空间。可以分一块较大的 Eden 空间和两块较小的 Survivor 空间,每次使用 Eden 空间和其中一块 Survivor。当回收时,将 Eden 和 Survivor 中还存活的对象一次性复制到另一块 Survivor 上,最后清理 Eden 和 Survivor 空间。大小比例一般是 8 : 1 : 1,每次浪费 10% 的 Survivor 空间。但是这里有一个问题就是如果存活的大于 10% 怎么办?这里采用一种分配担保策略:多出来的对象直接进入老年代。
2.3 标记-整理算法
不同于针对新生代的复制算法,针对老年代的特点,创建该算法。主要是把存活对象移到内存的一端。
2.4 分代回收
根据存活对象划分几块内存区,一般是分为新生代和老年代。然后根据各个年代的特点制定相应的回收算法。
新生代
每次垃圾回收都有大量对象死去,只有少量存活,选用复制算法比较合理。
老年代
老年代中对象存活率较高、没有额外的空间分配对它进行担保。所以必须使用 标记 —— 清除 或者 标记 —— 整理 算法回收。
2.5 垃圾回收器


image.png

说明:如果两个收集器之间存在连线说明他们之间可以搭配使用。
2.5.1 Serial 收集器
这是一个单线程收集器。意味着它只会使用一个 CPU 或一条收集线程去完成收集工作,并且在进行垃圾回收时必须暂停其它所有的工作线程直到收集结束。


image.png

2.5.2 ParNew 收集器
可以认为是 Serial 收集器的多线程版本。
image.png

并行:Parallel
指多条垃圾收集线程并行工作,此时用户线程处于等待状态
并发:Concurrent
指用户线程和垃圾回收线程同时执行(不一定是并行,有可能是交叉执行),用户进程在运行,而垃圾回收线程在另一个 CPU 上运行。
2.5.3 Parallel Scavenge 收集器
这是一个新生代收集器,也是使用复制算法实现,同时也是并行的多线程收集器。
CMS 等收集器的关注点是尽可能地缩短垃圾收集时用户线程所停顿的时间,而 Parallel Scavenge 收集器的目的是达到一个可控制的吞吐量(Throughput = 运行用户代码时间 / (运行用户代码时间 + 垃圾收集时间))。

作为一个吞吐量优先的收集器,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整停顿时间。这就是 GC 的自适应调整策略(GC Ergonomics)。
2.5.4 Serial Old 收集器
收集器的老年代版本,单线程,使用 标记 —— 整理。


image.png

2.5.5 Parallel Old 收集器
Parallel Old 是 Parallel Scavenge 收集器的老年代版本。多线程,使用 标记 —— 整理


image.png

2.5.6 CMS 收集器
CMS (Concurrent Mark Sweep) 收集器是一种以获取最短回收停顿时间为目标的收集器。基于 标记 —— 清除 算法实现。
运作步骤:

1.初始标记(CMS initial mark):标记 GC Roots 能直接关联到的对象
2.并发标记(CMS concurrent mark):进行 GC Roots Tracing
3.重新标记(CMS remark):修正并发标记期间的变动部分
4.并发清除(CMS concurrent sweep)


image.png

缺点:对 CPU 资源敏感、无法收集浮动垃圾、标记 —— 清除 算法带来的空间碎片
2.5.7 G1 收集器
面向服务端的垃圾回收器。
优点:并行与并发、分代收集、空间整合、可预测停顿。

运作步骤:

1.初始标记(Initial Marking)
2.并发标记(Concurrent Marking)
3.最终标记(Final Marking)
4.筛选回收(Live Data Counting and Evacuation)


image.png

2.6 内存分配与回收策略
2.6.1 对象优先在 Eden 分配

对象主要分配在新生代的 Eden 区上,如果启动了本地线程分配缓冲区,将线程优先在 (TLAB) 上分配。少数情况会直接分配在老年代中。

一般来说 Java 堆的内存模型如下图所示:


image.png

你可能感兴趣的:(高级Java jvm全部就在这里了)