Elasticsearch 字段数据类型 6.5版本

Elasticsearch为文档中的字段支持多种不同的数据类型:

Core datatypesedit

string

text and keyword

Numeric datatypes

long, integer, short, byte, double, float, half_float, scaled_float

Date datatype

date

Boolean datatype

boolean

Binary datatype

binary

Range datatypes

integer_range, float_range, long_range, double_range, date_range

Complex datatypesedit

Object datatype

object for single JSON objects

Nested datatype

nested for arrays of JSON objects

Geo datatypesedit

Geo-point datatype

geo_point for lat/lon points

Geo-Shape datatype

geo_shape for complex shapes like polygons

Specialised datatypesedit

IP datatype

ip for IPv4 and IPv6 addresses

Completion datatype

completion to provide auto-complete suggestions

Token count datatype

token_count to count the number of tokens in a string

mapper-murmur3

murmur3 to compute hashes of values at index-time and store them in the index

mapper-annotated-text

annotated-text to index text containing special markup (typically used for identifying named entities)

Percolator type

Accepts queries from the query-dsl

join datatype

Defines parent/child relation for documents within the same index

Alias datatype

Defines an alias to an existing field.

Arraysedit

In Elasticsearch, arrays do not require a dedicated field datatype. Any field can contain zero or more values by default, however, all values in the array must be of the same datatype. See Arrays.

Multi-fieldsedit

It is often useful to index the same field in different ways for different purposes. For instance, a string field could be mapped as a text field for full-text search, and as a keyword field for sorting or aggregations. Alternatively, you could index a text field with the standard analyzer, the english analyzer, and the french analyzer.

This is the purpose of multi-fields. Most datatypes support multi-fields via the fields parameter.

官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/6.5/mapping-types.html

你可能感兴趣的:(Elasticsearch 字段数据类型 6.5版本)