以下glide源码基于库上最新的4.11版本,
以下很多代码没有写中间的层层调用,因为层级太多了,感兴趣的可以自己通过debugu模式去看或者直接看源码。
上一篇文章说到图片缓存的LRU的原理分析,并简单的说了下glide的使用,今天就开门见山,先看最简单的使用示例:
Glide.with(this)
.load(url).diskCacheStrategy(DiskCacheStrategy.ALL)
.error(R.drawable.icon).placeholder(R.drawable.frank).into(img);
总体介绍
首先看看4.11版本的整体代码:
是非常多的,要一个个分析不现实,咱们就抓几个重点理解一下好了。
with()
还是从最初的with方法来分析:
with可以传入很多种类型的,例如activity,fragment,context,view等,其实都大同小异,都是为了和这个参数类型的生命周期进行绑定。
public static RequestManager with(@NonNull FragmentActivity activity) {
return getRetriever(activity).get(activity);
}
先分析下getRetriever(activity)吧:
private static RequestManagerRetriever getRetriever(@Nullable Context context) {
// 检查context不能为空
···
return Glide.get(context).getRequestManagerRetriever();
}
这里其实就是先对context做了一个非空判断,继续往下看:
public static Glide get(@NonNull Context context) {
if (glide == null) {
//通过反射到GeneratedAppGlideModuleImpl,然后传递给下一个方法
GeneratedAppGlideModule annotationGeneratedModule =
getAnnotationGeneratedGlideModules(context.getApplicationContext());
synchronized (Glide.class) {
if (glide == null) {
//初始化glide的各种参数
checkAndInitializeGlide(context, annotationGeneratedModule);
}
}
}
return glide;
}
private static GeneratedAppGlideModule getAnnotationGeneratedGlideModules(Context context) {
···
//通过反射拿到GeneratedAppGlideModuleImpl类
Class clazz =
(Class)
Class.forName("com.bumptech.glide.GeneratedAppGlideModuleImpl");
result =
clazz.getDeclaredConstructor(Context.class).newInstance(context.getApplicationContext());
···
return result;
}
通过反射拿到了GeneratedAppGlideModuleImpl类,初始化glide的动作,拿到Glide之后,再去获取RequestManagerRetriever。拿到了RequestManagerRetriever之后,要去get了,可以看到get其实就是获取一个requestManager。
public RequestManager get(@NonNull FragmentActivity activity) {
if (Util.isOnBackgroundThread()) {
//如果是在子线程,获取全局的context,并获取requestManager
return get(activity.getApplicationContext());
} else {
//如果是在主线程,调用supportFragmentGet获取requestManager
assertNotDestroyed(activity);
FragmentManager fm = activity.getSupportFragmentManager();
return supportFragmentGet(activity, fm, /*parentHint=*/ null, isActivityVisible(activity));
}
}
具体一点说,分两步走:
- 1.先会去判断是否在子线程,如果在子线程调用的会去获取一个全局的context,然后用这个全局的context,通过工厂模式拿到requestManager,所以尽量不要在非主线程中去调用。
private RequestManager getApplicationManager(@NonNull Context context) {
// Either an application context or we're on a background thread.
if (applicationManager == null) {
synchronized (this) {
if (applicationManager == null) {
Glide glide = Glide.get(context.getApplicationContext());
//因为正常情况下我们在fragment或activity中可以去绑定生命周期,
//但是这里是在子线程或者没有拿到全局的context,所以需要手动新建一个全局的生命周期管理
applicationManager =
factory.build(
glide,
new ApplicationLifecycle(),
new EmptyRequestManagerTreeNode(),
context.getApplicationContext());
}
}
}
return applicationManager;
}
- 2.如果是在主线程:
- ++with的参数是fragmentActivity++:首先获取一个fragmentManager,通过fragmentManager新建一个空的fragment,把这个fragment添加到activity或者fragment中,这样就能感应宿主的生命周期!然后还是一样的,用工厂模式去新建一个requestManager。
- ++with的参数是fragment++:是获取childFragmentManager,其余流程不变;
- ++with的参数是Activity++:先获取fragmentManager,然后获取requestManagerFragment和requestMangaer;所以和fragment的区别,其实就是是获取supportFragment,还是fragment...
- ++with的参数是context或view++:判断context的类型,然后走上面的流程;
以下代码是with参数为fragmentActivity时的示例:
private RequestManager supportFragmentGet(
@NonNull Context context,
@NonNull FragmentManager fm,
@Nullable Fragment parentHint,
boolean isParentVisible) {
//获取一个fragment,这个fragment作为感知生命周期的感应者
SupportRequestManagerFragment current =
getSupportRequestManagerFragment(fm, parentHint, isParentVisible);
RequestManager requestManager = current.getRequestManager();
if (requestManager == null) {
//获取glide
Glide glide = Glide.get(context);
//用工厂模式创建一个manager。
requestManager =
factory.build(
glide, current.getGlideLifecycle(), current.getRequestManagerTreeNode(), context);
current.setRequestManager(requestManager);
}
return requestManager;
}
private SupportRequestManagerFragment getSupportRequestManagerFragment(
@NonNull final FragmentManager fm, @Nullable Fragment parentHint, boolean isParentVisible) {
//获取fragment
SupportRequestManagerFragment current =
(SupportRequestManagerFragment) fm.findFragmentByTag(FRAGMENT_TAG);
if (current == null) {
//先判断fragments里面是否有了fragment
current = pendingSupportRequestManagerFragments.get(fm);
if (current == null) {
//没有的话new一个fragment
current = new SupportRequestManagerFragment();
current.setParentFragmentHint(parentHint);
if (isParentVisible) {
//如果父界面是可见的,开始生命周期,并调用onStart;
current.getGlideLifecycle().onStart();
}
//并讲当前的fragment添加到队列中
pendingSupportRequestManagerFragments.put(fm, current);
fm.beginTransaction().add(current, FRAGMENT_TAG).commitAllowingStateLoss();
//这一步是将fragmentmanager remove!
handler.obtainMessage(ID_REMOVE_SUPPORT_FRAGMENT_MANAGER, fm).sendToTarget();
}
}
return current;
}
with小结
以上就是Glide.with()发生的事情,稍微小结一下:
with方法会先初始化glide一些所需要的环境,然后调用requestManagerRetriever对象的get,获取requestManager。如果传入的对象是全局的context,则不需要处理生命周期;如果传入的不是全局的context,会添加一个隐藏的fragment去感知生命周期。
下面我们继续分析一个很重要的load(),看看是如何加载资源的:
load()
load同样的,可以传入很多种类型的参数:
那么可以看到,其实最终都是返回的RequestBuilder。
用file举例:
public RequestBuilder load(@Nullable File file) {
return asDrawable().load(file);
}
public RequestBuilder asDrawable() {
return as(Drawable.class);
}
public RequestBuilder as(
@NonNull Class resourceClass) {
return new RequestBuilder<>(glide, this, resourceClass, context);
}
public RequestBuilder load(@Nullable File file) {
return loadGeneric(file);
}
可以看到方法都很短哈,asDrawable就是获取一个RequestBuilder,然后用这个builder去loadGeneric。来看看这个方法是干啥的:
private RequestBuilder loadGeneric(@Nullable Object model) {
this.model = model;
isModelSet = true;
return this;
}
ok...只是赋值了全局变量···初看的时候觉得也有点绕。那我们先跳过这一块,直接进入最终的into();等会会频繁地介绍到requestBuilder这个类;
into()
这里以into(imageview)举例:
public ViewTarget into(@NonNull ImageView view) {
Util.assertMainThread();
···
return into(
glideContext.buildImageViewTarget(view, transcodeClass),
/*targetListener=*/ null,
requestOptions,
Executors.mainThreadExecutor());
}
省略中间的一大堆代码,我们重点看下最终调用的方法里有个
glideContext.buildImageViewTarget(view, transcodeClass),这个返回的是DrawableImageViewTarget
public ViewTarget buildImageViewTarget(
@NonNull ImageView imageView, @NonNull Class transcodeClass) {
return imageViewTargetFactory.buildTarget(imageView, transcodeClass);
}
public ViewTarget buildTarget(
@NonNull ImageView view, @NonNull Class clazz) {
if (Bitmap.class.equals(clazz)) {
return (ViewTarget) new BitmapImageViewTarget(view);
} else if (Drawable.class.isAssignableFrom(clazz)) {
return (ViewTarget) new DrawableImageViewTarget(view);
}
}
继续看看into():
private > Y into(
@NonNull Y target,
@Nullable RequestListener targetListener,
BaseRequestOptions> options,
Executor callbackExecutor) {
···
//初始化一个请求,这里会去判断是否需要缩略图,从而获取的request不一样
Request request = buildRequest(target, targetListener, options, callbackExecutor);
//从target中获取request
Request previous = target.getRequest();
//检查request和之前的request是否一致
if (request.isEquivalentTo(previous)
&& !isSkipMemoryCacheWithCompletePreviousRequest(options, previous)) {
//检查请求是否开始了,如果开始了,则不用new一个,直接执行begin;
if (!Preconditions.checkNotNull(previous).isRunning()) {
previous.begin();
}
return target;
}
//如果之前没有对应的request,则先clear,层层查看发现最终调用的是
//,request.clear已经将target的request设置为null
requestManager.clear(target);
//设置request为刚刚初始化的request,这里setRequest其实看到后面
//发现是调用的view.setTag,将request和view进行的一个绑定;
target.setRequest(request);
//这里的track分两个,一个是targetTrack进行生命周期的绑定
//还有一个是requestTracker执行了request.track。
requestManager.track(target, request);
return target;
}
上面是into的核心代码,看起来挺简单的,其实实现复杂。首先看buildRequest是如何初始化request的,代码很多,先看些简单的:
manager.track()
synchronized void track(@NonNull Target> target, @NonNull Request request) {
targetTracker.track(target);
requestTracker.runRequest(request);
}
public void runRequest(@NonNull Request request) {
requests.add(request);
//判断是否界面是否在pause状态,是的话不开始加载,不是的话立刻开始
if (!isPaused) {
request.begin();
} else {
request.clear();
if (Log.isLoggable(TAG, Log.VERBOSE)) {
Log.v(TAG, "Paused, delaying request");
}
pendingRequests.add(request);
}
}
可以看到,这里glide会去判断界面是否在显示中,如果是在显示中,立刻去执行begin,否则执行clear,并将请求放入到队列中。这个设计还是比较巧妙的,节省功耗;
再来看看是如何初始一个request的
buildRequest()
private Request buildRequestRecursive(···
Executor callbackExecutor) {
···
Request mainRequest =
buildThumbnailRequestRecursive(···);
···
Request errorRequest =
errorBuilder.buildRequestRecursive(···);
errorRequestCoordinator.setRequests(mainRequest, errorRequest);
return errorRequestCoordinator;
}
层层查看,发现最终返回的是singleRequest。
private SingleRequest(··Executor callbackExecutor) {
this.requestLock = requestLock;
···
this.engine = engine;
this.callbackExecutor = callbackExecutor;
status = Status.PENDING;
···
}
来看看,先前说的很重要很重要的方法begin是做了哪些事情:
public void begin() {
synchronized (requestLock) {
···
if (model == null) {
···
//这个最终调用的是设置错误图片
onLoadFailed(new GlideException("Received null model"), logLevel);
return;
}
···
if (status == Status.COMPLETE) {
//加载完成了就直接调用onResourceReady
onResourceReady(resource, DataSource.MEMORY_CACHE);
return;
}
status = Status.WAITING_FOR_SIZE;
if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
onSizeReady(overrideWidth, overrideHeight);
} else {
target.getSize(this);
}
if ((status == Status.RUNNING || status == Status.WAITING_FOR_SIZE)
&& canNotifyStatusChanged()) {
target.onLoadStarted(getPlaceholderDrawable());
}
···
}
}
这里出现几个方法,(先说结论,层层查看的代码太多了,哈哈哈)简单地说下几个方法的意义:
- 1.onLoadFailed:当发现model为null时,直接给你报个错,设置个错误图片,model是source来源,所以source都为空了,报错是肯定的啦。
- 2.onResourceReady:通过层层查看,可以看到,最终调用的还是ViewTarget的onResourceReady,这个里面是直接setImageDrawale,最终再去执行engine的release方法;
- 3.onSizeReady:执行engine.load代码
- 4.getSize:最终调用的是view的自己的计算尺寸
- 5.onLoadStarted:view的依附变化回调
下面来验证下我们的结论,看看onSizeReady的源码
public void onSizeReady(int width, int height) {
stateVerifier.throwIfRecycled();
synchronized (requestLock) {
···
loadStatus =
engine.load(
glideContext,
model,
···
priority,
requestOptions.getDiskCacheStrategy(),
requestOptions.getTransformations(),
···
);
···
}
}
好家伙,又出来一个新的engine。大胆猜测小心求证,engine应该是真正负责加载图片的工具人,哦不对,工具类!直接看engine.load做了啥:
public LoadStatus load(···) {
···
EngineResource> memoryResource;
synchronized (this) {
//先从缓存中去取,有就直接拿,没有就新建
memoryResource = loadFromMemory(key, isMemoryCacheable, startTime);
if (memoryResource == null) {
return waitForExistingOrStartNewJob(
glideContext,
model,
···);
}
}
//这里也调用了onResourceReady
cb.onResourceReady(memoryResource, DataSource.MEMORY_CACHE);
return null;
}
会先去缓存中取,有就直接用,执行OnResourceReady。
没有,就执行waitForExistingOrStartNewJob():
private LoadStatus waitForExistingOrStartNewJob(···) {
···
EngineJob engineJob =
engineJobFactory.build(
key,
isMemoryCacheable,···);
DecodeJob decodeJob =
decodeJobFactory.build(
model,
key,
···
engineJob);
jobs.put(key, engineJob);
engineJob.addCallback(cb, callbackExecutor);
engineJob.start(decodeJob);
if (VERBOSE_IS_LOGGABLE) {
logWithTimeAndKey("Started new load", startTime, key);
}
return new LoadStatus(cb, engineJob);
}
出现了两个关键的类:
engineJob和decodeJob,先剧透一下,decodeJob是一个runnable,主要负责解析工作,engineJob是负责加载过程中的管理一些回调之类的。先看engineJob.start做了什么:
public synchronized void start(DecodeJob decodeJob) {
this.decodeJob = decodeJob;
GlideExecutor executor =
decodeJob.willDecodeFromCache() ? diskCacheExecutor : getActiveSourceExecutor();
executor.execute(decodeJob);
}
GlideExecutor是个继承了ExcutorService的类,很明显是个线程池。而且这里通过decodeJob来判断是不是从缓存中解析,如果是从缓存中解析,调用diskCacheExecutor,否则调用getActiveSourceExecutor;
再来看看decodeJob的run方法:
public void run() {
···
runWrapped();
···
if (stage != Stage.ENCODE) {
throwables.add(t);
notifyFailed();
}
if (!isCancelled) {
throw t;
}
throw t;
}
继续看runWrapped():
private void runWrapped() {
switch (runReason) {
case INITIALIZE:
stage = getNextStage(Stage.INITIALIZE);
currentGenerator = getNextGenerator();
runGenerators();
break;
case SWITCH_TO_SOURCE_SERVICE:
runGenerators();
break;
case DECODE_DATA:
decodeFromRetrievedData();
break;
default:
throw new IllegalStateException("Unrecognized run reason: " + runReason);
}
}
会去判断run的原因:分为三种,初始化,转化为source_service,还有decode_data:
这里我们先看initialize的runGenerators():
private void runGenerators() {
currentThread = Thread.currentThread();
startFetchTime = LogTime.getLogTime();
boolean isStarted = false;
while (!isCancelled
&& currentGenerator != null
&& !(isStarted = currentGenerator.startNext())) {
stage = getNextStage(stage);
currentGenerator = getNextGenerator();
if (stage == Stage.SOURCE) {
reschedule();
return;
}
···
}
}
出现了1个新的类:currentGenerator,实现了DataFetcherGenerator的接口,这个接口主要是用来产生一系列的modelLoader和model。哈哈,又来了两个不认识的类,还是先剧透下,这两个类其实就是根据不同的source来判断是选择用哪种方式来加载资源的,后面还会牵扯到一个叫streamFactory的类。
首先目前glide的版本中有三类generator:dataCache,resourceCache,sourceCache,顾名思义,也是根据三种来源的,就先看下source的startnext是如何实现的:
public boolean startNext() {
if (dataToCache != null) {
Object data = dataToCache;
dataToCache = null;
cacheData(data);
}
if (sourceCacheGenerator != null && sourceCacheGenerator.startNext()) {
return true;
}
···
return started;
}
会先去判断,cache如果不为空,则调用cacheData;否则,获取loadData,然后执行startNextLoad()。loadData是什么?我们上面已经有图片了,这里直接说下loadData的fetcher是真正来处理图片的加载的:
private void cacheData(Object dataToCache) {
···
try {
//获取sourceencoder
Encoder
这里先说个结论:调用cacheData会先去清理数据,然后返回一个generator;
finally方法块里最终调用了loadData.fetcher.cleanup();出现了熟悉的身影,loadData,先搞清楚loadData是个啥吧:
ModelLoader.LoadData。这里只截取部分代码图:
前面说过了,loadData和model是将来源和使用方法通过entry绑定在一起的,这里再扩展下,model,loadData是在何时绑定的:
loadData注册时间
在cacheData里出现了getSourceEncoder来获取encoder,从这里开始看:
Encoder getSourceEncoder(X data) throws Registry.NoSourceEncoderAvailableException {
return glideContext.getRegistry().getSourceEncoder(data);
}
通过context获取registry,然后再去获取Encoder;
public synchronized Encoder getEncoder(@NonNull Class dataClass) {
for (Entry> entry : encoders) {
if (entry.handles(dataClass)) {
return (Encoder) entry.encoder;
}
}
return null;
}
这个registry是啥呢...我们看看这个类中有两个方法append和prepend:
看看是谁在调用它的,经过层层调查,最终发现是在这调用的:
Glide的构造方法中!调用了好多append,来进行注册动作!
registry
.append(ByteBuffer.class, new ByteBufferEncoder())
.append(InputStream.class, new StreamEncoder(arrayPool))
/* Bitmaps */
.append(Registry.BUCKET_BITMAP, ByteBuffer.class, Bitmap.class, byteBufferBitmapDecoder)
.append(Registry.BUCKET_BITMAP, InputStream.class, Bitmap.class, streamBitmapDecoder);
所以回到前面的getSourceEncoder,就是每个数据类型对应一个encoder;
ModelLoader,LoadData
modelLoader是将各种类型的数据转化为resource;
LoadData是modelLoader的内部类;
class LoadData {
public final Key sourceKey;
public final List alternateKeys;
public final DataFetcher fetcher;
···
}
这个fetcher其实就承担了加载这一块的工作,我们举个例子分析下fetacher的结构:
HttpUrlFetcher
public void loadData(···DataCallback super InputStream> callback) {
try {
InputStream result = loadDataWithRedirects(glideUrl.toURL(), 0, null, glideUrl.getHeaders());
callback.onDataReady(result);
} finally {···
}
}
loadData里调用到了loadDataWithRedirects来获取一个inputStream。
private InputStream loadDataWithRedirects(
URL url,···, Map headers) throws IOException {
···
urlConnection = connectionFactory.build(url);
···
urlConnection.setConnectTimeout(timeout);
···
final int statusCode = urlConnection.getResponseCode();
if (isHttpOk(statusCode)) {
return getStreamForSuccessfulRequest(urlConnection);
}···
}
省去一大堆的网络通信,咱们知道最后是调用了HttpUrlConnection来获取流的就行了。拿到流后去进行一系列的操作进行设置图片。代码特别多,一篇文章讲不完,这篇文章的源码级解析就先到这了。
总结
Glide的设计是非常完美,非常经典的。glide总体来说不是仅仅想做个图片的框架,它是一个可以将一个资源转换成不同形式的框架。下一篇文章来分析下glide的缓存机制。