- Hive函数大全:从核心内置函数到自定义UDF实战指南(附详细案例与总结)
一个天蝎座 白勺 程序猿
大数据开发从入门到实战合集hivehadoop数据仓库
目录背景一、Hive函数分类与核心函数表1.内置函数分类2.用户自定义函数(UDF)分类二、常用函数详解与实战案例1.数学函数2.字符串函数3.窗口函数4.自定义UDF实战三、总结与优化建议1.核心总结2.性能优化建议3.常问问题背景Hive作为Hadoop生态中最常用的数据仓库工具,其强大的函数库是高效处理和分析海量数据的核心能力之一。Hive函数分为内置函数和用户自
- dcm4che
jamie_zhengmin
dcm4chearchivejboss工具服务器
dcm4che工具包DICOMtoolkitDICOM工具包dcm4chee归档服务器器IHE影像管理器和影像归档执行器(dcm4jbossarchive影像归档器,影像扫描检查和报告的管理)dcm4che2重架构dcm4che的重架构实现
- 将Hive数据导出为CSV和Excel格式的方法
翠绿探寻
hiveexcelhadoop编程
将Hive数据导出为CSV和Excel格式的方法在Hive中存储和处理大规模数据是一项常见的任务。有时候,我们需要将Hive中的数据导出为CSV或Excel格式,以便进行进一步的分析或与其他工具进行集成。本文将介绍如何使用编程的方式将Hive数据导出为CSV和Excel格式,并提供相应的源代码。Hive数据导出为CSV格式要将Hive数据导出为CSV格式,我们可以使用Hive的内置函数INSERT
- debian11安装MongoDB
韩搏
Linux基础mongodb数据库
debian11bit64安装MongoDB6.0安装必要的包sudoaptinstallgnupgcurl导入MongoDB公钥curl-fsSLhttps://www.mongodb.org/static/pgp/server-6.0.asc|sudogpg--dearmor-o/usr/share/keyrings/mongodb-archive-keyring.gpg创建MongoDB源列
- linux 安装anaconda与jupyter notebook配置
土豆土豆,我是洋芋
python
一、anaconda安装在官网或清华镜像下载anaconda在载前看一下自己的系统版本,下载对应的anaconda版本。在系统中输入:cat/proc/version,如下图所示##下载地址1)官网:https://www.anaconda.com/distribution/2)清华镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/安
- Hive 与 SparkSQL 的语法差异及性能对比
自然术算
Hivehivehadoop大数据spark
在大数据处理领域,Hive和SparkSQL都是极为重要的工具,它们为大规模数据的存储、查询和分析提供了高效的解决方案。虽然二者都致力于处理结构化数据,并且都采用了类似SQL的语法来方便用户进行操作,但在实际使用中,它们在语法细节和性能表现上存在诸多差异。了解这些差异,对于开发者根据具体业务场景选择合适的工具至关重要。语法差异数据定义语言(DDL)表创建语法Hive:在Hive中创建表时,需要详细
- Oracle V$SESSION详解
雨的遐想
oracle数据库
V$SESSION是SYS用户下面对于SYS.V_$SESSION视图的同义词。在本视图中,每一个连接到数据库实例中的session都拥有一条记录。包括用户session及后台进程如DBWR,LGWR,arcchiver等等。1.V$SESSION中的常用列V$SESSION是基础信息视图,用于找寻用户SID或SADDR,及检查用户的动态:(1)SQL_HASH_VALUE,SQL_ADDRESS
- Spark任务读取hive表数据导入es
小小小小小小小小小小码农
hiveelasticsearchsparkjava
使用elasticsearch-hadoop将hive表数据导入es,超级简单1.引入pomorg.elasticsearchelasticsearch-hadoop9.0.0-SNAPSHOT2.创建sparkconf//spark参数设置SparkConfsparkConf=newSparkConf();//要写入的索引sparkConf.set("es.resource","");//es集
- Redis 安装详细教程(小白版)
小小鸭程序员
springjavaAI编程springcloudredis
一、Windows系统安装Redis方法1:直接安装(推荐新手)下载RedisforWindows访问微软维护的Redis版本:https://github.com/microsoftarchive/redis/releases下载Redis-x64-3.2.100.msi(或最新版本)安装包。安装Redis双击下载的.msi文件点击下一步,勾选“AddRedisinstallationfolde
- Hive SQL 精进系列:REGEXP_REPLACE 函数的用法
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、REGEXP_REPLACE函数基础2.1基本语法参数详解2.2简单示例三、REGEXP_REPLACE函数的应用场景3.1去除特殊字符3.2统一字符串格式四、REGEXP_REPLACE与REPLACE函数的对比4.1功能差异4.2适用场景五、REGEXP_REPLACE与REGEXP函数的对比5.1功能差异5.2适用场景六、总结一、引言字符串处理是数据处理中的常见需求,Hive
- Hive SQL 精进系列:SUBSTR 函数的多样用法
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、SUBSTR函数基础介绍2.1基本语法2.2参数详解2.3简单示例三、SUBSTR函数常见应用场景3.1提取日期中的年份、月份或日期3.2隐藏部分敏感信息四、SUBSTR函数高级用法4.1结合条件判断动态截取4.2处理复杂字符串模式五、总结一、引言SUBSTR函数是HiveSQL中一个用于字符串截取的重要函数,在处理文本数据时发挥着关键作用。本文将全面且深入地介绍HiveSQL中S
- Hive----Hive进阶操作(三) HIVE 特殊分隔符处理
XiaodunLP
Hive
HIVE特殊分隔符处理补充:hive读取数据的机制:1、首先用InputFormat的一个具体实现类读入文件数据,返回一条一条的记录(可以是行,或者是你逻辑中的“行”)2、然后利用SerDe的一个具体实现类,对上面返回的一条一条的记录进行字段切割Hive对文件中字段的分隔符默认情况下只支持单字节分隔符,如果数据文件中的分隔符是多字符的,如下所示:01||huangbo02||xuzheng03||
- hive-进阶版-1
数据牧马人
hivehadoop数据仓库
第6章hive内部表与外部表的区别Hive是一个基于Hadoop的数据仓库工具,用于对大规模数据集进行数据存储、查询和分析。Hive支持内部表(ManagedTable)和外部表(ExternalTable)两种表类型,它们在数据存储、管理方式和生命周期等方面存在显著区别。以下是内部表和外部表的主要区别:1.数据存储位置内部表:数据存储在Hive的默认存储目录下,通常位于HDFS(HadoopDi
- NVIDIA下载老版本驱动/CUDA/Video Codec SDK的链接,以及一些解码参数说明
landihao
linux
NVIDIA下载老版本驱动/CUDA/VideoCodecSDK的链接从别的网站抄过来的CUDA:https://developer.nvidia.com/cuda-toolkit-archive老驱动:https://www.nvidia.cn/geforce/drivers/VideoCodecSDKhttps://developer.nvidia.com/video-codec-sdk-ar
- hive split 函数转义问题
进一步有进一步的欢喜
HiveSQL精进系列大数据
语法split(strstring,regexstring)--使用regex分割字符串str基本用法selectsplit('a,b,c,d',',')fromtemp_cwh_test;--分割--结果为数组>["a","b","c","d"]截取字符串中某个值selectsplit('a,b,c,d',',')[0]fromtemp_cwh_test;--提取第1个值>a特殊字符的处理针对特
- Hive SQL 精进系列:解锁 Hive SQL 中 KeyValue 函数的强大功能
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、KeyValue函数基础2.1语法结构详解形式一:`keyvalue(string,[string,string,]string)`形式二:`keyvalue(string,string)`2.2参数详解2.3返回值规则三、丰富的应用场景3.1解析学生成绩信息3.2处理员工考勤数据3.3分析网站访问参数3.4提取设备配置信息四、使用注意事项4.1分隔符的准确性4.2空值处理4.3多
- 大数据手册(Spark)--Spark安装配置
WilenWu
数据分析(DataAnalysis)大数据spark分布式
本文默认在zsh终端安装配置,若使用bash终端,环境变量的配置文件相应变化。若安装包下载缓慢,可复制链接到迅雷下载,亲测极速~准备工作Spark的安装过程较为简单,在已安装好Hadoop的前提下,经过简单配置即可使用。假设已经安装好了hadoop(伪分布式)和hive,环境变量如下JAVA_HOME=/usr/opt/jdkHADOOP_HOME=/usr/local/hadoopHIVE_HO
- 关于stable diffusion的lora训练在linux远程工作站的部署
回天一梦
stablediffusionpython经验分享
在学校Arc中部署loratraining,一大问题就是依赖缺失和冲突。可以利用miniconda或者anaconda建立虚拟环境来解决。安装anaconda或者miniconda(官网上也有教程):wgethttps://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.shchmod+xAnaconda3-5.3.0-Linux-x8
- Hive SQL 精进系列:一行变多行的 LATERAL VIEW EXPLODE
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、`LATERALVIEWEXPLODE`概述2.1基本概念2.2单词解析2.2.1`LATERAL`2.2.2`VIEW`2.2.3`EXPLODE`三、语法详解3.1基本语法结构3.2完整语法示例(针对映射情况)四、使用场景4.1数组数据展开4.2映射数据展开五、案例分析5.1展开数组示例5.1.1数据准备5.1.2使用`LATERALVIEWEXPLODE`展开数组5.1.3结
- sql获取某列出现频次最多的值_业务硬核SQL集锦
金渡江
sql获取某列出现频次最多的值
戳上方蓝字关注我这两年学会了跑sql,当时有很多同学帮助我精进了这个技能,现在也写成一个小教程,反馈给大家。适用对象:工作中能接触到sql查询平台的业务同学(例如有数据查询权限的产品与运营同学)适用场景:查询hive&mysql上的数据文档优势:比起各类从零起步的教程教材,理解门槛低,有效信息密度大,可以覆盖高频业务场景。文末有一些常见的小技巧,希望帮助同学们提升工作效率。SQL的基础结构:做一个
- Hive SQL 精进系列: JSON_TUPLE 快速提取多键值
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、json_tuple函数基础2.1基本语法参数解释返回值简单示例三、应用场景3.1数据提取与分析3.2数据集成与转换3.3复杂JSON数据处理四、json_tuple、get_json_object和from_json的对比4.1功能特点4.2语法和使用复杂度4.3性能表现4.4示例对比使用json_tuple使用get_json_object使用from_json五、使用注意事项
- hive sql报错
进一步有进一步的欢喜
大数据HiveSQL精进系列
1.hivesql报错FAILED:ParseExceptionline22:0cannotrecognizeinputnear''''''insubquerysource2.解决select*from(select...fromtable_1where...)table_outer嵌套的内层的表一定要有别名,也就是示例代码中的表名table_outer。
- HIVE开窗函数
Cciccd
sqlhive
ETL,SQL面试高频考点——HIVE开窗函数(基础篇)目录标题ETL,SQL面试高频考点——HIVE开窗函数(基础篇)一,窗口函数介绍二,开窗函数三,分析函数分类1,排序分析函数:实列解析对比总结2.聚合分析函数3.用spark自定义HIVE用户自定义函数后续更新中~一,窗口函数介绍窗口函数,也叫OLAP函数(OnlineAnallyticalProcessing,联机分析处理),可以对数据库数
- hive开窗函数总结
weixin_46134848
大数据hivemysql
文章目录概要整体架构流程示例1示例2小结概要hive开窗函数总结整体架构流程1.窗口函数的基本用法函数名()over()over关键字来指定函数执行的范围,包含三个分析子句:分组(partitionby)子句,排序(orderby)子句,窗口(rows)子句函数名(字段名)over(partitionbyorderbyrowsbetween)窗口大小可以通过rowsbetween…and…来限定,
- Hive MR & Spark & Yarn参数优化总结
大数据侠客
hive相关问题汇总及解决hivesparkmryarn参数优化
一、hivemr参数调优:sethive.optimize.ppd=true;--开启谓词下推。--动态分区参数sethive.exec.mode.local.auto=true;sethive.exec.dynamic.partition.mode=nonstrict;--默认是strict,表示至少有一个静态分区,nonstri
- hive 中优化性能的一些方法
闯闯桑
hivehadoop数据仓库
在ApacheHive中,性能优化是一个重要的课题,尤其是在处理大规模数据时。通过合理的优化方法,可以显著提升查询速度和资源利用率。以下是一些常见的Hive性能优化方法:1.数据存储优化1.1使用列式存储格式推荐格式:ORC和Parquet。优点:列式存储格式具有更高的压缩率和查询性能。支持谓词下推(PredicatePushdown)和列裁剪(ColumnPruning)。示例:CREATETA
- 使用 Doris 和 Iceberg
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- 使用 Doris 和 LakeSoul
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- doris:Hudi Catalog
向阳1218
大数据doris
使用限制Hudi表支持的查询类型如下:表类型支持的查询类型CopyOnWriteSnapshotQuery,TimeTravel,IcrementalReadMergeOnReadSnapshotQueries,ReadOptimizedQueries,TimeTravel,IcrementalRead目前支持HiveMetastore和兼容HiveMetastore类型(例如AWSGlue/Al
- 大数据学习(67)- Flume、Sqoop、Kafka、DataX对比
viperrrrrrr
大数据学习flumekafkasqoopdatax
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦工具主要作用数据流向实时性数据源/目标应用场景Flume实时日志采集与传输从数据源到存储系统实时日志文件、网络流量等→HDFS、HBase、Kafka等日志收集、实时监控、实时分析Sqoop关系型数据库与Hadoop间数据同步关系型数据库→Hadoop生态系统(HDFS、Hive、
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理