AutoML之flaml:基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例之详细攻略

AutoML之flaml:基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例之详细攻略

 

目录

基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例

# 1、定义数据集

# 3、模型训练与验证

# 3.1、切分数据集

# 3.2、模型建立及训练

# 设定参数

# 3.3、输出最佳参数及其loss、耗费时间

# 3.4、模型评估

# 3.5、输出模型特征重要性(针对xgboost算法)


相关文章
AutoML之flaml:基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例之详细攻略
AutoML之flaml:基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例实现代码​​​​​​​

基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例

# 1、定义数据集

Density Age Weight Height Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist class
26 1.0811 34 131.5 67.5 36.2 88.6 74.6 85.3 51.7 34.7 21.4 28.7 27 16.5 7.9
11 1.0812 27 216 76 39.4 103.6 90.9 107.7 66.2 39.2 25.9 37.2 30.2 19 7.8
62 1.0298 54 193.25 70.25 38 107.6 102.4 99.4 61 39.4 23.6 32.7 29.9 19.1 30.7
54 1.0906 42 136.25 67.5 37.8 87.6 77.6 88.6 51.9 34.9 22.5 27.7 27.5 18.5 3.9
72 1.0796 56 160.75 73.75 36.4 93.6 82.9 96.3 52.9 37.5 23.1 29.7 27.3 18.2 8.5
234 1.0403 60 157.75 67.5 40.4 97.2 93.3 94 54.3 35.7 21 31.3 28.7 18.3 25.8
127 1.059 43 152.25 67.75 37.5 95.9 78 93.2 53.5 35.8 20.8 33.9 28.2 17.4 17.4
241 1.0207 65 224.5 68.25 38.8 119.6 118 114.3 61.3 42.1 23.4 34.9 30.1 19.4 35
212 1.0543 49 168.25 71.75 38.3 98.3 89.7 99.1 56.3 38.8 23 29.5 27.9 18.6 19.5
137 1.0325 43 187.75 74 37.7 97.8 98.6 100.6 63.6 39.2 23.8 34.3 28.4 17.7 29.4
169 1.061 35 172.75 69.5 37.6 99.1 90.8 98.1 60.1 39.1 23.4 32.5 29.8 17.4 16.5
219 1.0646 53 154.5 69.25 37.6 93.9 88.7 94.5 53.7 36.2 22 28.5 25.7 17.1 15
50 1.0756 47 158.25 72.25 34.9 90.2 86.7 98.3 52.6 37.2 22.4 26 25.8 17.3 10.2
248 1.0236 72 201 69.75 40.9 108.5 105 104.5 59.6 40.8 23.2 35.2 28.6 20.1 33.6
245 1.0641 68 155.5 69.25 36.3 97.4 84.3 94.4 54.3 37.5 22.6 29.2 27.3 18.5 15.2
184 1.0587 40 170.5 74.25 37.7 98.9 90.4 95.5 55.4 38.9 22.4 30.5 28.9 17.7 17.5
148 1.0873 25 143.75 72.5 35.2 92.3 76.5 92.1 51.9 35.7 22 25.8 25.2 16.9 5.3
226 1.065 55 169.5 68.25 37.2 101.7 91.1 97.1 56.6 38.5 22.6 33.4 29.3 18.8 14.8
95 1.0991 53 224.5 77.75 41.1 113.2 99.2 107.5 61.7 42.3 23.2 32.9 30.8 20.4 17.4
41 1.025 44 205 29.5 36.6 106 104.3 115.5 70.6 42.5 23.7 33.6 28.7 17.4 32.9

# 3、模型训练与验证

# 3.1、切分数据集

# 3.2、模型建立及训练

​​​​​​​# 设定参数

# 3.3、输出最佳参数及其loss、耗费时间

xgboost
Best hyperparmeter config: {'n_estimators': 62, 'max_leaves': 10, 'min_child_weight': 0.7892720199977752, 'learning_rate': 0.1101743533128382, 'subsample': 0.746247577681268, 'colsample_bylevel': 0.7152322660529653, 'colsample_bytree': 0.9299683267604371, 'reg_alpha': 0.0391736214683682, 'reg_lambda': 0.0043196018324903095}
Best r2 on validation data: 0.9624
Training duration of best run: 0.03208 s



lgbm
Best hyperparmeter config: {'n_estimators': 43, 'num_leaves': 4, 'min_child_samples': 4, 'learning_rate': 0.6033971750435617, 'log_max_bin': 7, 'colsample_bytree': 0.9043858352550422, 'reg_alpha': 0.0009765625, 'reg_lambda': 32.27210014686686}
Best r2 on validation data: 0.9586
Training duration of best run: 0.008558 s

# 3.4、模型评估

R2:  0.9853399901027871
MAE:  0.6854529804653592
MSE:  0.9898463799269194


R2:  0.9727251680203316
MAE:  1.0213410357069146
MSE:  1.8416013282039074

# 3.5、输出模型特征重要性(针对xgboost算法)

AutoML之flaml:基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例之详细攻略_第1张图片

你可能感兴趣的:(ML,自动化,机器学习,flaml)