大数据(9h)FlinkSQL之Lookup Join

文章目录

  • 概述
  • pom.xml
  • MySQL建表
    • 对应Flink的建表SQL
  • Lookup Join
    • FlinkSQL
    • 完整Java代码

概述

  • lookup join通常是 查询外部系统的数据 来 充实FlinkSQL的主表
    例如:事实表 关联 维度表,维度表在外部系统(如MySQL)
  • 要求:
    1个表具有处理时间属性(基于Processing Time Temporal Join语法)
    语法上,和一般JOIN比较,多了FOR SYSTEM_TIME AS OF
    另1个表由连接器(a lookup source connector)支持
  • Lookup Cache
    默认情况下,不启用Lookup Cache
    可设置lookup.cache.max-rowslookup.cache.ttl参数来启用
    启用Lookup Cache后,Flink会先查询缓存,缓存未命中才查询外部数据库
    启用缓存可加快查询速,但缓存中的记录未必是最新的
SQL参数 说明
connector 连接器,可以是jdbckafkafilesystem
driver 数据库驱动
lookup.cache.ttl Lookup Cache中每行数据 的 最大 存活时间
lookup.cache.max-rows Lookup Cache中的最大行数

当 缓存的行数>lookup.cache.max-rows 时,将清除存活时间最久的记录
缓存中的行 的存货时间 超过lookup.cache.ttl 也会被清除

pom.xml

环境:WIN10+IDEA+JDK1.8+Flink1.13+MySQL8

<properties>
    <maven.compiler.source>8maven.compiler.source>
    <maven.compiler.target>8maven.compiler.target>
    <flink.version>1.13.6flink.version>
    <scala.binary.version>2.12scala.binary.version>
    <slf4j.version>2.0.3slf4j.version>
    <log4j.version>2.17.2log4j.version>
    <fastjson.version>2.0.19fastjson.version>
    <lombok.version>1.18.24lombok.version>
    <mysql.version>8.0.31mysql.version>
properties>

<dependencies>
    
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-javaartifactId>
        <version>${flink.version}version>
    dependency>
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-streaming-java_${scala.binary.version}artifactId>
        <version>${flink.version}version>
    dependency>
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-clients_${scala.binary.version}artifactId>
        <version>${flink.version}version>
    dependency>
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-runtime-web_${scala.binary.version}artifactId>
        <version>${flink.version}version>
    dependency>
    
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-table-planner-blink_${scala.binary.version}artifactId>
        <version>${flink.version}version>
    dependency>
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-streaming-scala_${scala.binary.version}artifactId>
        <version>${flink.version}version>
    dependency>
    
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-csvartifactId>
        <version>${flink.version}version>
    dependency>
    
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-jsonartifactId>
        <version>${flink.version}version>
    dependency>
    
    <dependency>
        <groupId>org.apache.flinkgroupId>
        <artifactId>flink-connector-jdbc_${scala.binary.version}artifactId>
        <version>${flink.version}version>
    dependency>
    
    <dependency>
        <groupId>mysqlgroupId>
        <artifactId>mysql-connector-javaartifactId>
        <version>${mysql.version}version>
    dependency>
    
    <dependency>
        <groupId>org.slf4jgroupId>
        <artifactId>slf4j-apiartifactId>
        <version>${slf4j.version}version>
    dependency>
    <dependency>
        <groupId>org.slf4jgroupId>
        <artifactId>slf4j-log4j12artifactId>
        <version>${slf4j.version}version>
    dependency>
    <dependency>
        <groupId>org.apache.logging.log4jgroupId>
        <artifactId>log4j-to-slf4jartifactId>
        <version>${log4j.version}version>
    dependency>
    
    <dependency>
        <groupId>com.alibabagroupId>
        <artifactId>fastjsonartifactId>
        <version>${fastjson.version}version>
    dependency>
    
    <dependency>
        <groupId>org.projectlombokgroupId>
        <artifactId>lombokartifactId>
        <version>${lombok.version}version>
    dependency>
dependencies>

MySQL建表

DROP DATABASE IF EXISTS db0;
CREATE DATABASE db0;
CREATE TABLE db0.tb0 (
  a VARCHAR(255) PRIMARY KEY,
  b INT(3),
  c BIGINT(5),
  d FLOAT(3,2),
  e DOUBLE(4,2),
  f DATE DEFAULT '2022-10-24',
  g TIMESTAMP DEFAULT CURRENT_TIMESTAMP);
INSERT db0.tb0 (a,b,c,d,e) VALUES
('aa',1,11,1.11,11.11),
('bb',2,22,2.22,22.22),
('cc',3,33,3.33,33.33);
SELECT * FROM db0.tb0;

对应Flink的建表SQL

SQL

CREATE TEMPORARY TABLE temp_tb0 (
  a STRING,
  b INT,
  c BIGINT,
  d FLOAT,
  e DOUBLE,
  f DATE,
  g TIMESTAMP,
  PRIMARY KEY(a) NOT ENFORCED)
WITH (
  'lookup.cache.max-rows' = '2',
  'lookup.cache.ttl' = '30 second',
  'connector' = 'jdbc',
  'driver' = 'com.mysql.cj.jdbc.Driver',
  'url' = 'jdbc:mysql://localhost:3306/db0',
  'username' = 'root',
  'password' = '123456',
  'table-name' = 'tb0'
)

测试代码

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

public class Hello {
    public static void main(String[] args) {
        //创建流和表的执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(1);
        StreamTableEnvironment tbEnv = StreamTableEnvironment.create(env);
        //创建表,连接MySQL表
        tbEnv.executeSql("CREATE TEMPORARY TABLE temp_tb0 (\n" +
                "  a STRING,\n" +
                "  b INT,\n" +
                "  c BIGINT,\n" +
                "  d FLOAT,\n" +
                "  e DOUBLE,\n" +
                "  f DATE,\n" +
                "  g TIMESTAMP,\n" +
                "  PRIMARY KEY(a) NOT ENFORCED)\n" +
                "WITH (\n" +
                "  'lookup.cache.max-rows' = '2',\n" +
                "  'lookup.cache.ttl' = '30 second',\n" +
                "  'connector' = 'jdbc',\n" +
                "  'driver' = 'com.mysql.cj.jdbc.Driver',\n" +
                "  'url' = 'jdbc:mysql://localhost:3306/db0',\n" +
                "  'username' = 'root',\n" +
                "  'password' = '123456',\n" +
                "  'table-name' = 'tb0'\n" +
                ")");
        //执行查询,打印
        tbEnv.sqlQuery("SELECT * FROM temp_tb0").execute().print();
    }
}

测试结果打印

+----+----+---+----+------+-------+------------+----------------------------+
| op |  a | b |  c |    d |     e |          f |                          g |
+----+----+---+----+------+-------+------------+----------------------------+
| +I | aa | 1 | 11 | 1.11 | 11.11 | 2022-10-24 | 2022-11-29 14:57:50.000000 |
| +I | bb | 2 | 22 | 2.22 | 22.22 | 2022-10-24 | 2022-11-29 14:57:50.000000 |
| +I | cc | 3 | 33 | 3.33 | 33.33 | 2022-10-24 | 2022-11-29 14:57:50.000000 |
+----+----+---+----+------+-------+------------+----------------------------+

Lookup Join

FlinkSQL

SELECT * FROM v
JOIN t
  FOR SYSTEM_TIME AS OF v.y
  ON v.x=t.a

完整Java代码

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import java.util.Scanner;

import static org.apache.flink.table.api.Expressions.$;

public class Hi {
    public static void main(String[] args) {
        //创建流和表的执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(1);
        StreamTableEnvironment tbEnv = StreamTableEnvironment.create(env);
        //创建左表
        DataStreamSource<String> d = env.addSource(new ManualSource());
        Table tb = tbEnv.fromDataStream(d, $("x"), $("y").proctime());
        tbEnv.createTemporaryView("v", tb);
        //创建右表(维度表)
        tbEnv.executeSql("CREATE TEMPORARY TABLE t ( " +
                "  a STRING, " +
                "  b INT, " +
                "  c BIGINT, " +
                "  d FLOAT, " +
                "  e DOUBLE, " +
                "  f DATE, " +
                "  g TIMESTAMP, " +
                "  PRIMARY KEY(a) NOT ENFORCED) " +
                "WITH ( " +
                "  'lookup.cache.max-rows' = '2', " +
                "  'lookup.cache.ttl' = '30 second', " +
                "  'connector' = 'jdbc', " +
                "  'driver' = 'com.mysql.cj.jdbc.Driver', " +
                "  'url' = 'jdbc:mysql://localhost:3306/db0', " +
                "  'username' = 'root', " +
                "  'password' = '123456', " +
                "  'table-name' = 'tb0' " +
                ")");
        //执行查询,打印
        tbEnv.sqlQuery("SELECT * FROM v " +
                "JOIN t " +
                "  FOR SYSTEM_TIME AS OF v.y " +
                "  ON v.x=t.a").execute().print();
    }

    /** 手动输入的数据源 */
    public static class ManualSource implements SourceFunction<String> {
        public ManualSource() {}

        @Override
        public void run(SourceFunction.SourceContext<String> sc) {
            Scanner scanner = new Scanner(System.in);
            while (true) {
                String str = scanner.nextLine().trim();
                if (str.equals("STOP")) {break;}
                if (!str.equals("")) {sc.collect(str);}
            }
            scanner.close();
        }

        @Override
        public void cancel() {}
    }
}

测试结果
大数据(9h)FlinkSQL之Lookup Join_第1张图片

你可能感兴趣的:(Flink,大数据,java)