- 【大模型实战篇】使用GPTQ量化QwQ-32B微调后的推理模型
源泉的小广场
大模型大模型量化推理模型量化量化qwq32bgptq量化大模型推理性能调优
1.量化背景之所以做量化,就是希望在现有的硬件条件下,提升性能。量化能将模型权重从高精度(如FP32)转换为低精度(如INT8/FP16),内存占用可减少50%~75%。低精度运算(如INT8)在GPU等硬件上计算效率更高,推理速度可提升2~4倍。我们的任务是,将QwQ-32B微调后的推理模型,也就是bf16的精度,通过量化,压缩到int4。关于QwQ-32B微调,可以参考《利用ms-swift微
- 【python爬虫实战】——基于全国各城市快递网点的数据采集
小L工程师
python爬虫实战爬虫网络爬虫pythonselenium开发语言数据分析数据可视化
一、项目背景随着电子商务的快速发展,快递行业成为了现代物流的重要组成部分。快递网点的分布和服务质量直接影响到用户的物流体验。为了更好地了解快递网点的分布情况、服务范围以及联系方式等信息,本项目通过爬虫技术从公开的快递信息网站上采集相关数据。‘>本文章中所有内容仅供学习交流使用,不用于其他任何目的,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!二、项目目的和意义本项目的主要目的是通
- JAVA随机生成六位验证码
Ning.L
javapython开发语言
使用java语言随机生成六位数的验证码在importjava.util.Random;publicclassRandomCodeGenerator{publicstaticvoidmain(String[]args){//生成六位数验证码StringverificationCode=generateVerificationCode(6);System.out.println("生成的验证码是:"+
- 从零开始学习鸿蒙系统
Ning.L
华为harmonyos
1.移动通讯技术的发展-1G时代:1980年摩托罗拉开发出了第一部手机,使用的就是1G的技术。只能进行语音通话。就是大哥大。-2G时代:1996年到1997年出现了第二代GSM、CDMA等数字制式手机,增加了接收数据的功能。2G不仅可以通话,还可以数据收发的功能,最开始的速度只有9K/S。如果我想收发一些图片或者音频技术是不可能的,因为速度太慢了。后来随着互联网多媒体的流行,多了图片,视频等,所以
- ## centos7搭建nfs高可用共享存储
weixin_45674361
高可用部署linux服务器centosnfs运维
centos7搭建nfs双机热备的高可用共享存储本文通过使用keepalived+nfs+rsync,解决了主从服务器双向同步和客户端挂载失效的问题,实现了nfs文件系统双机热备。名称IP地址客户端192.168.1.1服务端服务器1192.168.1.100服务端服务器2192.168.1.200实施步骤keepalived部署在192.168.1.100和192.168.1.200上执行安装依
- 前端缓存接口数据
jjjjjjjjj¢
笔记前端
在前端缓存接口数据时,可以结合浏览器缓存策略、前端存储(localStorage、sessionStorage、IndexedDB)、内存缓存(变量存储)、ServiceWorker等方式,选择适合的方案。使用浏览器HTTP缓存(推荐,依赖后端支持)如果接口数据不会频繁变化,可以使用HTTP缓存策略(强缓存+协商缓存),减少不必要的请求。后端设置Cache-Control在接口响应头中,服务器可以
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- 机器学习中输入输出Tokens的概念详解
爱吃土豆的程序员
机器学习基础机器学习人工智能Tokens
随着深度学习技术的快速发展,大语言模型(LargeLanguageModels,LLMs)已经成为自然语言处理(NLP)领域的一个热点研究方向。这些模型不仅能够生成高质量的文本,还能在多种任务中展现出卓越的表现,比如机器翻译、问答系统、文本摘要等。在大语言模型的工作流程中,Tokens的概念扮演着至关重要的角色。本文将详细介绍大语言模型如何使用Tokens,以及如何计算Tokens的数量。什么是T
- 基于Gradio实现的增删改查(CRUD)模板系统设计方案
大霸王龙
pythongradio
基于Gradio实现的增删改查(CRUD)模板系统设计方案,结合了交互界面优化与数据持久化方案,支持本地JSON存储和动态界面更新:一、系统架构设计数据存储层采用JSON文件实现数据持久化(data.json)数据结构示例:{"items":[{"id":1,"name":"示例项目","category":"测试","status":"进行中"}]}界面交互层使用gr.Blocks实现多组件布局
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- 【GPT入门】第23课 langchain serve介绍
*星星之火*
大模型gptlangchain
【GPT入门】第23课langchainserve介绍1.langchain介绍2.思路3.代码1.langchain介绍langserve是一个用于简化LangChain应用部署的工具,它可以将使用LangChain构建的链(chains)、代理(agents)等组件快速转化为RESTfulAPI服务,下面从多个方面详细介绍它的作用:1.简化部署流程一键部署为API:LangChain可用于构建
- 【GPT入门】第24课 langfuse介绍
*星星之火*
大模型gpt
【GPT入门】第24课langfuse介绍1.langfuse概念与作用2.代码3.页面效果4.设计模式1.装饰器模式2.上下文管理模式1.langfuse概念与作用Langfuse是一款专为大规模语言模型(LLM)应用开发设计的开源平台。其作用主要包括以下几个方面:提升开发效率:通过消除LLM应用构建与运维的复杂性,让开发者、运维团队及产品经理能更专注于核心开发与迭代优化,减少在监控与优化方面的
- 【GPT入门】第20课 langchain的function calling 初步体验
*星星之火*
大模型gptlangchainpython
【GPT入门】第20课langchain的functioncalling初步体验1.langchain的functioncalling非常简洁2.代码3.执行结果:1.langchain的functioncalling非常简洁在方法名说明方法用途和参数作用增加@tool标签langchain方法自动把@tool转为方法定义,后续方法调用都很简洁下面代码用支持单函数与多函数调用,自己体验一下quer
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 泰克AFG1022这么强大的功能,你还没有了解么?
思迈18086111968
科技
多种波形生成:支持生成多种标准波形,如正弦波、方波、三角波、脉冲波、锯齿波、噪声波等,还能生成50种常用的任意波形,满足不同测试场景需求。高精度输出:具有14位垂直分辨率,可提供高分辨率的波形输出,确保信号的精确度;频率分辨率达1μHz,能满足对不同频率信号的精确输出要求。多模式运行:支持连续模式、扫描模式、突发模式和调制模式。连续模式可连续输出选定波形;扫描模式能在一定频率范围内进行扫描输出;突
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- linux sed命令
weifexie
Linuxlinux运维服务器sedawk
linuxsed命令作为三剑客的一员,也是到了不得不写写总结的时候了,按惯例,先给出出处,首当齐冲wikihttps://zh.wikipedia.org/wiki/Sedsed(意为流编辑器,源自英语“streameditor”的缩写)是一个使用简单紧凑的编程语言来解析和转换文本Unix实用程序。sed是最早支持正则表达式的工具之一,至今仍然用于文本处理,特别是用于替换命令。用于纯文本字符串操作
- 一个简单的日志类Logger
qinfen123456
单片机嵌入式硬件c++学习笔记开发语言
实现一个C++简单日志类,具备以下特性:日志文件命名采用文件名前缀加上日期的格式,方便管理与识别。对单个日志文件大小进行限制,当文件大小达到20MB时,自动开启新的日志文件。具备过期文件清理机制,自动删除保留时间超过365天的日志文件,节省存储空间。该日志类是线程安全的,能够在多线程环境下稳定运行,避免日志记录冲突。支持使用format格式进行日志记录,方便灵活输出不同格式的日志信息。自动创建子目
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- 基于多向量检索器的多模态RAG实现:用于表格、文本和图像
lichunericli
人工智能自然语言处理
原文地址:Multi-VectorRetrieverforRAGontables,text,andimages2023年10月20日概括跨不同数据类型(图像、文本、表格)的无缝问答是RAG追求的目标之一。我们将发布threenewcookbooks,展示在包含混合内容类型的文档上使用RAG的多向量检索器。这些cookbooks还提出了一些将多模态LLM与多向量检索器配对以解锁图像上的RAG的想法。
- Hystrix 实现限流\降级\熔断
杏花春雨江南
java开发那些事儿hystrixjava开发语言
Hystrix是一个强大的库,用于处理分布式系统中的延迟和容错问题。它提供了限流、降级和熔断等功能。下面是一个完整的Java示例,展示如何使用Hystrix实现限流、降级和熔断。1.添加依赖在pom.xml中添加Hystrix的依赖:xml复制com.netflix.hystrixhystrix-core1.5.18运行HTML2.创建Hystrix命令创建一个继承自HystrixCommand的
- 基础架构系列篇-系统WIN10使用VS+CMAKE编译AWS-SDK-CPP
dong-123456
架构运维知识点aws云计算c++vscmake
基础架构系列篇-系统WIN10使用VS+CMAKE编译AWS-SDK-CPP目录1.下载GIT(https://git-scm.com/downloads),本地安装2.下载CMAKE(https://cmake.org/download/),这里用的版本3.17,本地安装3.下载VS19版本,安装4.下载AWS-SDK-1.8地址https://github.com/aws/aws-sdk-cp
- 【.NET 6】RabbitMQ延迟消息指南
人生短几个秋
.netcorerabbitmq.net
背景最近遇到一个比较特殊需求,需要修改一个的RabbitMQ消费者,以实现在消费某种特定的类型消息时,延迟1小时再处理,几个需要注意的点:延迟是以小时为单位不是所有消息都延迟消费,只延迟特定类型的消息只在第一次消费时延迟1小时,容错机制产生的重新消费(也即消息消费失败,多次进入延迟队列重试),则不再延迟1小时消费者消费过程中可能会重启考虑到这几点,我们需要一个标识以及持久化,不能简单使用Threa
- AI如何创作音乐及其案例
alankuo
人工智能
AI创作音乐主要有以下几种方式:基于深度学习的生成模型深度神经网络:通过大量的音乐数据训练,让AI学习音乐的结构、旋律、和声、节奏等特征。如Transformer架构,其注意力机制可捕捉跨小节的旋律关联性,能生成具有长期依赖性的音乐序列。生成对抗网络(GAN):包含生成器和判别器,生成器负责生成音乐样本,判别器判断生成的音乐是否真实。两者相互对抗、不断优化,使生成器生成更逼真的音乐。变分自编码器(
- AI时代如何引流
alankuo
人工智能
AI时代引流可以从以下几个方面着手:利用AI精准定位与个性化营销精准客户画像:借助AI整合多维度数据,涵盖客户的年龄、性别、地理位置、消费习惯、浏览历史等,深度挖掘后绘制精准的客户画像,明确潜在客户特征与需求,让营销活动更具针对性。个性化内容创作:运用AI的自然语言处理功能,依据客户特点和需求生成个性化的营销内容,如广告文案、产品推荐等。以电商平台为例,可针对不同用户生成符合其喜好的商品推荐文案。
- element-ui简介、安装和使用代码
alankuo
前端前端
一、Element-UI简介Element-UI是一套基于Vue.js的桌面端组件库,由饿了么前端团队开源。它提供了丰富的组件,如按钮、表单、表格、菜单、对话框等,这些组件具有统一的视觉风格和交互设计,能够帮助开发者快速构建美观、易用的Web应用程序。Element-UI的特点包括:丰富的组件库涵盖了Web应用开发中常见的各种组件需求,无论是简单的UI元素还是复杂的交互组件都能找到,大大减少了开发
- 学习Web3.0需要具备哪些基础知识?
alankuo
人工智能人工智能
学习Web3.0需要具备以下基础知识:一、计算机科学基础1.编程知识-了解至少一种编程语言,如Python、JavaScript等。这将有助于理解Web3.0应用程序的开发和智能合约的编写。-熟悉编程概念,如变量、数据类型、控制结构、函数等。2.数据结构和算法-掌握常见的数据结构,如数组、链表、栈、队列、树、图等,以及它们的操作和应用。-了解基本的算法,如排序、搜索、递归等,以及它们的时间和空间复
- 【versal】【petalinux】添加LED驱动
qq2108462953
petalinuxlinux运维服务器
versal添加LED驱动`提示:本文使用外部kernel与uboot`一、LED1.1LED功能1.2LED节点1.3LED操作命令1.3.1点LED1.3.2关闭LED二、LED驱动2.1驱动文件2.2设备树兼容属性三、LED设备树配置3.1设备树配置信息3.2设备树配置信息讲解四、提示4.1正确4.2错误4.3提示:本文使用外部kernel与uboot一、LED1.1LED功能向节点中bri
- LLM-PowerHouse: 一站式大型语言模型定制训练与推理指南
Nifc666
语言模型人工智能自然语言处理whisperlangchaingpt开源软件
LLM-PowerHouse:解锁大型语言模型的潜力在人工智能和自然语言处理领域,大型语言模型(LargeLanguageModels,LLMs)正在掀起一场革命。随着GPT、BERT等模型的出现,LLMs展现出了惊人的能力,可以执行各种复杂的语言任务。然而,如何有效地训练和使用这些强大的模型仍然是一个挑战。针对这一需求,GitHub上的LLM-PowerHouse项目应运而生,为开发者、研究人员
- 深入理解C++编程:从内存管理到多态与算法实现
嵌入式Jerry
C++c++算法开发语言
C++是一门功能强大的编程语言,广泛应用于系统编程、游戏开发和高性能计算等领域。本文将通过一系列经典问题,深入探讨C++的核心知识点,包括内存管理、多态(结合函数重载与覆盖)、多线程、TCP/IP模型、软链接与硬链接的区别,以及常见算法实现。每个知识点都配有详细的代码示例和解释,帮助你更好地理解和掌握。1.内存管理:内存泄露与检测什么是内存泄露?内存泄露是指程序在动态分配内存后,未能正确释放已不再
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理