一、四种Suggester
介绍
Suggesters
基本的运作原理是将输入的文本分解为token
,然后在索引的字典里查找相似的term
并返回。 根据使用场景的不同,Elasticsearch
里设计了4种类别的Suggester
,分别是:
•Term Suggester
•Completion Suggester
•Phrase Suggester
•Context Suggester
二、四个Suggester
比较[1]
Term Suggester
——基于编辑距离算法实现。在提供建议之前,对输入的文本进行分析
Phrase suggester
——在 term suggester
之上添加额外的逻辑以选择整个经校正的短语,而不是基于 ngram-language
模型加权的单个 token
Completion Suggester
——只能用于前缀查询,速度很快,性能要求高
•需求场景是:输入一个字符,即时发送一个请求查询匹配项•数据结构:并非是倒排索引实现的,而是将分词的数据编码成FST
和索引一起存放;FST
会被加载进内存,速度很快•限制:需要对查询字段指定为Completion
Context Suggester
——可以通过筛选提供建议,context
支持两种类型,分别是category
(任意字符串),geo
(地理位置信息)
准确度:completion > phrase > term
三、Completion Suggester Mapping
的设置
因为Completion Suggester
的搜索补全和搜索提示是要求查询的字段type
是Completion
类型的。所以在定义Mapping
时候需要将被查询的字段type
定义为completion
类型。查询的Mapping
如下:
PUT document {
"mappings": {
"properties": {
"id": {
"type": "keyword"
},
"doc_name": {
"type": "completion",
"analyzer": "ik_max_word"
},
"doc_number": {
"type": "text",
"analyzer": "ik_max_word"
},
"doc_type": {
"type": "text",
"analyzer": "ik_max_word"
},
"keywords": {
"type": "completion",
"analyzer": "ik_max_word"
},
"pubdate": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
},
"attachment": {
"properties": {
"content": {
"type": "text",
"analyzer": "ik_max_word"
}
}
}
}
}
}
因为需要进行全文检索添加了attachment
的内容
四、TransportClient
和REST client
的区别[2]
Elasticsearch
计划在Elasticsearch 7.0
中弃用TransportClient
,
在8.0中完全删除它。相反,您应该使用Java
高级REST client
,rest client
执行HTTP
请求来执行操作,无需再序列化的Java
请求。
TransportClient 是ElasticSearch(java)客户端封装对象,使用transport模块远程连接到Elasticsearch集群,该transport node并不会加入集群,而是简单的向ElasticSearch集群上的节点发送请求。transport node使用轮询机制进行集群内的节点进行负载均衡,尽管大多数操作(请求)可能是“两跳操作”。(图片来源于Elasticsearch权威指南)
Java REST
客户端有两种风格:
•Java Low Level REST Client
:elasticsearch client
低级别客户端。它允许通过http
请求与Elasticsearch
集群进行通信。API
本身不负责数据的编码解码,由用户去编码解码。它与所有的ElasticSearch
版本兼容。
•Java High Level REST Client
:Elasticsearch client
官方高级客户端。基于低级客户端,它定义的API
,已经对请求与响应数据包进行编码解码。
五、基于ElasticSearch Java REST Client API的自动补全
/**
* @param suggestField 查询搜索补全的字段
* @param suggestValue 查询搜索补全的值
* @return 返回搜索补全list
* @throws IOException IO异常
*/
public List suggestSearchList(String suggestField, String suggestValue) throws IOException {
/**
* ElasticSearch 7.X版本以上 不在使用TransportClient进行客户端连接 所以使用client进行连接客户端无法进行使用
* 7.X版本将搜索补全(completion)合并到SuggestBuilders中进行使用,在SuggestBuilders中构建completionSuggestion搜索参数
*/
// 构建SearchRequest、SearchSourceBuilder 指定查询的库
// SearchRequest searchRequest = new SearchRequest(ESConst.ES_INDEX);
SearchRequest searchRequest = new SearchRequest("testdata");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 控制显示内容 (优化查询效率将所有无关查询提示字段都不显示)
String[] excludeFields = new String[] {"doc_number","doc_type","attachment","doc_keywords","id","pubdate","doc_name"};
String[] includeFields = new String[] {""};
searchSourceBuilder.fetchSource(includeFields, excludeFields);
// 构建completionSuggestionBuilder传入查询的参数
CompletionSuggestionBuilder completionSuggestionBuilder = SuggestBuilders.completionSuggestion(suggestField).prefix(suggestValue).size(10);
SuggestBuilder suggestBuilder = new SuggestBuilder();
// 定义查询的suggest名称
suggestBuilder.addSuggestion(suggestField+"_suggest", completionSuggestionBuilder);
searchSourceBuilder.suggest(suggestBuilder);
searchRequest.source(searchSourceBuilder);
// 执行查询
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 获取查询的结果
Suggest suggest = searchResponse.getSuggest();
Set suggestSet = new HashSet<>();
int maxSuggest = 0;
if (suggest != null) {
// 获取Suggestion的结果
Suggest.Suggestion result = suggest.getSuggestion(suggestField+"_suggest");
// 遍历获得查询结果的Text
for (Object term : result.getEntries()) {
if (term instanceof CompletionSuggestion.Entry) {
CompletionSuggestion.Entry item = (CompletionSuggestion.Entry) term;
if (!item.getOptions().isEmpty()) {
// 若item的option不为空,循环遍历
for (CompletionSuggestion.Entry.Option option : item.getOptions()) {
String tip = option.getText().toString();
if (!suggestSet.contains(tip)) {
suggestSet.add(tip);
++maxSuggest;
}
}
}
}
if (maxSuggest >= 10) {
break;
}
}
}
return Arrays.asList(suggestSet.toArray(new String[]{}));
}
代码思路:
1、首先实例化构建SearchRequest
和SearchSourceBuilder
,查询document
文档;
2、控制查询显示的内容,使用searchSourceBuilder.fetchSource
控制excludeFields
和includeFields
(无关的要素不进行查询);
3、构建completionSuggestionBuilder
,以参数形式传入suggestField
和suggestValue
,默认设置size
为10;
4、定义查询的suggest_name
,通过suggestBuilder.addSuggestion
进行添加;
5、执行查询,searchResponse.getSuggest
获得查询的结果;
6、遍历获得Suggest
中的text
,输出传入list
返回给前端。
六、实现效果截图
References
[1]
四个Suggester
比较: https://www.jianshu.com/p/34db35d13cd3
[2]
TransportClient
和REST client
的区别: https://blog.csdn.net/prestigeding/article/details/83188043