- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- 【Rust基础】使用Rust和WASM开发的图片压缩工具
勇敢牛牛_
rustwasm开发语言图片压缩
图片压缩工具使用rust+wasm开发了一个简易版的图片压缩工具,支持JPG、PNG、GIF、WEBP等图片格式,不限制大小,无需上传图片,完全在浏览器中执行。工具地址:https://eai.coderbox.cn/image-compression实现方式JPEG对原图进行量化,通过指定质量参数,控制压缩质量。PNG同样的进行量化,并重新将rgba颜色(如果原图是rgba)调整为8位索引颜色,
- 【块浮点(BFP)技术:原理、设计及应用】
youngerwang
移动5G测试验证之禅道matlab信息与通信基带工程
文章目录块浮点(BFP)技术:原理、设计及应用摘要关键词:块浮点(BFP)技术;量化;数据压缩;自适应调整;联合编码;硬件实现;Matlab一、引言二、BFP原理(一)基本概念(二)量化过程(三)逆过程(解量化)三、BFP设计(一)块大小选择(二)缩放因子编码(三)量化比特宽度选择四、BFP设计难点解析(一)数据动态特性与块大小适配(二)缩放因子编码的复杂度与效率平衡(三)量化精度与压缩比的最优平
- 使用DeepSeek R1大模型编写迅投 QMT 的量化交易 Python 代码
wtsolutions
qmt量化交易pythonqmtdeepseek量化交易代码生成
随着人工智能技术的迅猛发展,利用AI工具提升工作效率已成为现代开发者的重要手段。在使用deepseek官方网页生成迅投QMT代码的时候,deepseek给出的代码是xtquant代码,也就是miniqmt代码,并不是我们传统意义上说的大QMT可用的代码。因此,我们需要自建一个知识库,让deepseek根据我的知识库里面的知识,去帮我生成大QMT可用的交易代码。一、建立迅投QMT的知识库建立迅投QM
- 负载均衡策略 -- 轮询
Escape2022
Nginx
我们可以先来看一下,现在我们在工地上,老板呢找了三个人来搬砖。由于我们是使用的是轮询的策略,所以我们是这三个工地上的人在搬砖的时候,他们其实工作量是平均分配的。比如说我们有砖头来第一块,我们会交给第一个人去搬,第二块会交给第二个人,第三块会交给第三个人,三个为一组。到第四个的话,第四个还是会交给第一人,第五个会给第二个,第六个会给第三个人。如此循环往复的话,其实可以看到,我们只要有砖头来,它都是一
- 基于PyCATIA的工程图视图锁定工具开发实战解析
Python×CATIA工业智造
CATIA二次开发python自动化
引言本文针对CATIA工程图设计中视图误操作问题,基于PySide6与PyCATIA库开发了一款轻量化视图锁定工具。通过Python二次开发实现全视图/选定视图快速锁定、非模态交互界面及状态实时反馈功能,有效提升大型装配体工程图操作效率。文章深度解析代码架构设计、关键技术实现及工程应用价值,提供完整的开发方法论。一、工具功能与工程应用场景1.1核心功能模块功能模块技术指标应用场景全视图锁定批量操作
- 【从零开始学习计算机科学】计算机体系结构(一)计算机体系结构、指令、指令集(ISA)与量化评估
贫苦游商
学习服务器网络计算机体系结构ISA指令集量化评估
【从零开始学习计算机科学】计算机体系结构(一)计算机体系结构、指令、指令集(ISA)与量化评估概论计算机体系结构简介计算机的分类并行体系结构指令集体系结构(ISA)分类存储器寻址寻址模式操作数大小指令ISA的编码程序的优化计算机体系结构量化评估存储器体系结构概论计算机体系结构与计算机组成原理之间的联系非常紧密,其研究范畴基本一致,计算机体系结构与计算机组成原理两者是相辅相成的。但是,计算机体系结构
- YOLO算法全面改进指南(二)
niuTaylor
YOLO改进YOLO算法
以下是为YOLO系列算法设计的系统性改进框架,结合前沿技术与多领域创新,提供可支持高水平论文发表的详细改进思路。本方案整合了轻量化设计、多模态融合、动态特征优化等创新点,并给出可验证的实验方向。一、多模态提示驱动的开放场景检测系统1.核心创新三模态提示机制:文本提示编码器:基于RepRTA(可重参数化区域文本对齐)构建轻量级文本编码网络,将自然语言描述映射为128维语义向量。视觉提示编码器:采用S
- 软件工程简答
Ruannn(努力版)
软件工程
什么是软件工程软件工程:将系统化的、规范的、可量化的方法应用于软件的开发、运行和维护,即将工程化方法应用于软件。支持软件工程的根基在于质量关注点。软件工程的基础是过程层,将各个技术层次结合在一起。方法层为构建软件提供技术上的解决方法。工具层为过程和方法提供自动化或半自动化的支持。通用过程模型的定义内容通⽤过程框架定义了5种框架活动——沟通、策划、建模、构建以及部署。⼀系列普适性活动——项⽬跟踪控制
- 鸿蒙开发工程师简历项目撰写全攻略
谢道韫689
鸿蒙随笔harmonyos华为
一、项目结构的黄金法则建议采用「4+1」结构:项目背景(业务价值)+技术架构(鸿蒙特性)+核心实现(技术难点)+个人贡献(量化成果)+附加价值(延伸影响)二、鸿蒙特色技术点提炼技巧鸿蒙核心技术技术维度具体实现案例量化成果示例分布式软总线自定义协议实现家电设备低功耗连接连接成功率从89%提升至97%ArkUI框架基于TS扩展实现动态UI模板引擎开发效率提升40%,代码量减少60%原子化服务实现天气服
- ESP32 智能猫喂水开发日志(RICE/MoSCoW/Kano三种产品路线规划)
天瑜创客
猫喂水项目单片机c++c语言数据结构visualstudiocodeharmonyos
RICE/MoSCoW/Kano三种产品路线的差异分析一、核心定位与适用场景差异1.RICE模型-核心逻辑:通过量化指标(Reach接触量、Impact影响程度、Confidence信心指数、Effort投入精力)计算需求优先级,聚焦资源投入与收益最大化。-适用场景:适用于需要平衡开发成本与预期收益的项目,例如新产品功能迭代或市场推广策略优化。2.MoSCoW模型-核心逻辑:将需求分为四类——Mu
- AR眼镜——软件技术栈的必经之路
Julian.zhou
人机交互未来思考人工智能ar人工智能交互空间计算语言模型
AR眼镜软件技术栈的必经之路:从操作系统到生态构建的深度解析摘要AR眼镜作为下一代人机交互入口,其软件技术栈的成熟度直接决定了用户体验与市场渗透率。本文基于行业最新技术动态与头部企业布局,深度剖析AR眼镜软件行业必须突破的七大技术方向,揭示从底层框架到应用生态的全栈技术储备路径。一、操作系统与底层框架:实时性与轻量化的双重革命AR眼镜软件生态的根基在于操作系统的定制化与优化,需满足三大核心需求:实
- 深度学习模型性能全景评估与优化指南
niuTaylor
深度学习人工智能
深度学习模型性能全景评估与优化指南一、算力性能指标体系1.核心算力指标对比指标计算方式适用场景硬件限制TOPS(TeraOperationsPerSecond)每秒万亿次整数运算量化模型推理NVIDIAJetsonNano仅支持FP16/FP32TFLOPS(TeraFLoating-pointOPerationsperSecond)TFLOPS=Cores×FLOPs/Cycle×Frequen
- 基于 EMA12 指标结合 iTick 外汇报价 API 、股票报价API、指数报价API的量化策略编写与回测
iTick提供了强大的外汇报价API、股票报价API和指数报价API服务,为量化策略的开发提供了丰富的数据支持。本文将详细介绍如何使用Python结合EMA12指标和iTick的报价API来构建一个简单的量化交易策略,并对该策略进行回测。1.引言在量化交易领域,技术指标是构建交易策略的重要基础。iTick提供了强大的外汇报价API、股票报价API和指数报价API服务,为量化策略的开发提供了丰富的数
- 用Python修改Word文档字体
在数字化办公场景中,Word文档作为主流文件格式承载着大量商务文书与学术资料。传统手动调整字体格式的操作模式存在显著局限性:当面对批量文档处理、动态内容生成或企业级模板维护时,逐一手工修改不仅效率低下,更难以保障格式规范的统一性。通过Python实现文档字体的程序化控制,能够有效构建自动化处理流程,在确保排版精准度的同时,显著提升文档批量化操作能力。本文将介绍如何使用Python修改Word文档段
- 软件研发如何量化管理考核KPI指标
软件工程
明确关键业务目标、量化数据指标、过程管控与反馈、重视协同与激励是软件研发中量化管理考核KPI的主要切入点。其中,过程管控与反馈尤为关键,因为它能帮助团队及时发现进度和质量问题,并快速响应调整策略,让每个阶段的目标与执行更趋于一致。通过持续监控研发过程中各项数据指标,并对出现的偏差进行即时纠偏,可以让团队在激烈的竞争环境中始终保持高效迭代和持续创新的能力,为业务拓展提供源源不断的动力。一、软件研发量
- 【DNN量化工具】QKeras 工具简介
kanhao100
笔记dnn人工智能神经网络
QKeras工具简介QKeras是一个用于量化深度学习模型的Keras扩展库,旨在使深度学习模型的量化(即将模型的浮点权重转换为低精度格式)变得简单而高效。QKeras主要目标是优化模型的存储和推理速度,特别适用于需要在资源受限的设备(如移动设备和嵌入式系统)上运行深度学习模型的场景。QKeras的主要特点量化支持:QKeras提供了对不同类型量化的支持,包括权重量化和激活量化。用户可以根据需求选
- 《代码与灯影:一个互联网“搬砖者”的十六小时马拉松》
清晨6:30,手机闹钟第三次震动时,王昊的手指在黑暗中摸索着按下"稍后提醒"。枕边充电器散发的微光里,他瞥见钉钉群里跳动的99+未读消息——昨夜两点部署的自动化脚本还在生产环境报错。一、困顿清晨:在咖啡因里开机7:15,地铁早高峰的人流像被编译失败的代码,在闸机口不断堆栈溢出。他缩在车厢角落,用手机查看凌晨的服务器监控日志,突然发现某个API接口响应时间突破2000ms。"这得在晨会上重点提...
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- 深入解析 DeepSeek-R1 模型的显存与内存需求
gs80140
基础知识科谱deepseek
DeepSeek-R1系列模型涵盖从轻量级到超大规模的多个版本,适用于不同的应用场景。了解各版本在不同量化精度下的显存和内存需求,有助于选择适合自身硬件配置的模型。模型参数与量化精度的关系模型的参数量决定了其基础大小,而量化精度(如FP16、INT8、INT4)则影响每个参数所占用的存储空间。通过降低量化精度,可以显著减少模型的显存和内存占用,但可能会对模型性能产生一定影响。以下是不同量化精度下,
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- 量化交易api有哪些类型?如何选择适合自己的量化交易api?
股票程序化交易接口
量化交易股票API接口Python股票量化交易区块链量化交易api类型选择数据获取股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>量化交易API的主要类型量化交易依赖大量数据,数据获取型API就显得尤为重要。这种类型的API能够连接到各种数据源,如股票市场数据、期货数据等。它可以为交易者提供实时价格数据、历史数据等。一些API能从各大证券交易所获取股票的最新成交
- 模型部署实战:PyTorch生产化指南
小诸葛IT课堂
pytorch人工智能python
一、为什么要做模型部署?模型部署是将训练好的模型投入实际应用的关键步骤,涉及:模型格式转换(TorchScript/ONNX)性能优化(量化/剪枝)构建API服务移动端集成本章使用ResNet18实现图像分类,并演示完整部署流程。二、模型转换:TorchScript与ONNX1.准备预训练模型importtorchimporttorchvision#加载预训练模型model=torc
- FPGA——DDS原理及代码实现
FPGA——DDS原理及代码实现一、DDS各参数意义如图,一个量化的32点的正弦波,也就是说一个ROM里存了32个这样的数据,每次读出一个数据要1ms,分别读出1,2,3...30,31,32,共32个点,读取完整的正弦波需要1ms*32=32ms的时间该正弦波参数为>周期T=1ms*32=32ms,>频率为f=1/T=1/(1ms*(32/1))在读出一个数据时间不变(1ms)的情况下,想要让读
- 需求池膨胀时如何科学排序优先级
需求分析
需求池膨胀时如何科学排序优先级主要依靠数据驱动、战略对齐、风险评估**。其中数据驱动是关键,通过收集历史数据、用户反馈与市场趋势,对各项需求进行量化评估,帮助企业在需求膨胀时做出精准排序和资源配置。实践表明,数据驱动的决策可使需求响应速度提升约30%,大大优化资源分配效果。一、需求池膨胀现象的背景与挑战、需求池指的是企业内部或市场上积累的各类需求、项目或功能请求。随着企业发展和市场环境变化,需求池
- GGUF量化模型技术解析与DeepSeek-R1-Distill-Llama-8B选型指南
每天三杯咖啡
人工智能
```markdown#【完全指南】GGUF量化技术与DeepSeek-R1模型选型:从入门到部署##什么是模型量化?(小白扫盲版)###1.1量化就像"模型减肥术"-**传统模型**:每个参数用32位浮点数(好比高清无损图片)-**量化模型**:用4-8位整数存储(类似手机压缩照片)-**核心原理**:`FP32→Int8/Int4`的数学映射,保留关键特征###1.2为什么要量化?|对比项|原
- 向量数据库 PieCloudVector 进阶系列丨打造以 LLM 为基础的聊天机器人
本系列前两篇文章深入探讨了PieCloudVector在图片和音频数据上的应用之后,本文将聚焦于文本数据,探索PieCloudVector对于文本数据的向量化处理、存储以及检索,并最终结合LLM打造聊天机器人的全流程。在自然语言处理任务中涉及到大量对文本数据的处理、分析和理解,而向量数据库在其中发挥了重要的作用。本文为《PieCloudVector进阶系列》的第三篇,将为大家介绍如何利用PieCl
- Websoft9 开源多应用平台:培养学生数字化能力的实战工具
开源实践
引言数字化教育转型的核心在于将技术工具与教学场景深度融合,但传统模式常因环境配置复杂、工具链割裂等问题阻碍实践教学效率。Websoft9开源多应用平台以标准化部署、多工具集成、轻量化运维为核心能力,为教育场景提供了一种技术门槛更低、协作效率更高的解决方案。本文基于实际教学需求与技术验证,探讨如何通过该平台构建数字化能力培养体系。一、技术特性与教育场景的适配性开源生态覆盖全技术栈,缩短教学准备周期平
- numpy学习笔记10:arr *= 2向量化操作性能优化
宁宁可可
#机器学习#Python基础与进阶numpy学习笔记
numpy学习笔记10:arr*=2向量化操作性能优化在NumPy中,直接对整个数组进行向量化操作(如arr*=2)的效率远高于显式循环(如foriinrange(len(arr)):arr[i]*=2)。以下是详细的解释:1.性能差异的原理(1)底层实现不同显式循环(错误示范):Python的for循环是解释执行的,每次迭代需要动态解析变量类型、执行函数调用等操作。对每个元素的操作会触发多次Py
- 量化投资中的投资组合风险溢价模型
云策量化
量化投资量化交易量化软件量化炒股QMT量化交易PTrade量化软件量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》量化投资中的投资组合风险溢价模型在量化投资的世界里,风险和回报总是如影随形。投资者们就像是在大海中航行的船长,既要寻找宝藏,又要避开暗礁。今天,我们就来聊聊量化投资中的一个关键工具——投资组合风险溢价模型,它就像是船长的罗盘,帮助我们在风险和回报之间找到平衡。引言:风险与回报的舞蹈在量化投资中,我们经常听到“风险溢价”这个词。
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite