Python | 蓝桥杯进阶第三卷——动态规划

Python | 蓝桥杯进阶第三卷——动态规划_第1张图片

欢迎交流学习~~


专栏: 蓝桥杯Python组刷题日寄


蓝桥杯进阶系列:

Python | 蓝桥杯进阶第一卷——字符串
Python | 蓝桥杯进阶第二卷——贪心
Python | 蓝桥杯进阶第三卷——动态规划
✈️ Python | 蓝桥杯进阶第四卷——图论(待续)
Python | 蓝桥杯进阶第五卷——数论(待续)
Python | 蓝桥杯进阶第六卷——递归(待续)
Python | 蓝桥杯进阶第七卷——搜索(待续)

Python|蓝桥杯进阶第三卷——动态规划

  • 能量项链
  • 夺宝奇兵
  • 和最大子序列
  • 超级玛丽
  • 2^k进制数


能量项链

题目:
时间限制:
1s

内存限制:
128MB

题目描述:
在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有 N 颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为 m,尾标记为 r,后一颗能量珠的头标记为 r,尾标记为 n,则聚合后释放的能量为 m*r*n(Mars单位),新产生的珠子的头标记为 m, 尾标记为 n
需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设 N=44 颗珠子的头标记与尾标记依次为 (2,3) (3,5) (5,10) (10,2)。我们用记号 表示两颗珠子的聚合操作,(j◎k) 表示第 j,k两颗珠子聚合后所释放的能量。则第 4、1 两颗珠子聚合后释放的能量为:
(4◎1)=10*2*3=60
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为
((4◎1)◎2)◎3)=10*2*3+10*3*5+10*5*10=710

输入描述:
第一行是一个正整数 N(4≤N≤100),表示项链上珠子的个数。
第二行是 N 个用空格隔开的正整数,所有的数均不超过 1000。第 i 个数为第 i 颗珠子的头标记(1≤i≤N),当 i 时,第 i 颗珠子的尾标记应该等于第 i+1 颗珠子的头标记。第 N 颗珠子的尾标记应该等于第 1 颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出描述:
只有一行,是一个正整数 E(E ≤ 2.1*10^9),为一个最优聚合顺序所释放的总能量

样例输入:

4
2 3 5 10

样例输出:
710


解题思路

针对动态规划类的题目,我们通常采取以下思路:

  • 确定 dp 数组以及下标的含义
  • 确定递推公式
  • 初始化 dp 数组
  • 确定遍历顺序

接下来的题目我们都会按照这个思路。

确定 dp 数组及其下标的含义:
dp[i][j] 表示第 i 颗珠子到第 j 颗珠子聚合成一颗珠子后所释放的最大能量。

确定递推公式:
dp[i][j] = max(dp[i][k] + dp[k+1][j] + nums[i]*nums[k+1]*nums[j+1]), i ≤ k < j i\leq k ik<j, k k k 为断点

这里的 nums[i] 表示第 i 颗珠子的头标记,但注意,项链为环状,我们可以将链状结构复制一份到后方,同时在末尾再加上第1颗珠子的头标记,比如:样例中的 2, 3, 5, 10,经过处理后是 nums=[2, 3, 5, 10, 2, 3, 5, 10, 2].


注意:从第 k 个位置断开(i ~ k 已经聚合成了一个珠子且 k+1 ~ j 也已经聚合成了一个珠子,这个在状态转移的过程中已经处理好了)左右两个珠子聚合得到的能量为 nums[i]*nums[k+1]*nums[j+1]

初始化 dp 数组:
都初始化为0即可。

确定遍历顺序:
顺序遍历即可。


参考代码

n = int(input())
nums = list(map(int, input().split())) * 2
nums.append(nums[0])
dp = [[0 for j in range(2*n)] for i in range(2*n)]
res = 0

# 递推
# 枚举区间长度
for length in range(1, n):
    # 枚举区间起点
    for i in range(2*n):
        # 计算区间终点
        j = i + length
        # 区间终点超出索引,退出
        if j >= 2*n:
            break
        # 枚举区间断点
        for k in range(i, j):
            # 状态转移
            dp[i][j] = max(dp[i][j], dp[i][k]+dp[k+1][j]+nums[i]*nums[k+1]*nums[j+1])
        # 计算res,最大值
        res = max(res, dp[i][j])

print(res)

夺宝奇兵

题目:
时间限制:
1s

内存限制:
128MB

题目描述:
在一座山上,有很多很多珠宝,它们散落在山底通往山顶的每条道路上,不同道路上的珠宝的数目也各不相同.下图为一张藏宝地图:

7
3  8
8  1  0
2  7  4  4
4  5  2  6  5

”夺宝奇兵”从山下出发,到达山顶,如何选路才能得到最多的珠宝呢?(每次只能直上或左上)
在上图所示例子中,按照 5-> 7-> 8-> 3-> 7 的顺序,将得到最大值 30.

输入描述:
第一行正整数 N(100 >= N >1),表示山的高度
接下来有 N 行非负整数,第 i 行有 i 个整数 (1 <= i <=N),表示山的第 i 层上从左到右每条路上的珠宝数目。

输出描述:
一个整数,表示从山底到山顶的所能得到的珠宝的最大数目.

样例输入:

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

样例输出:
30


解题思路

确定 dp 数组及其下标的含义:
dp[i][j] 表示位置 i,j 对应的珠宝最大数目。

确定递推公式:
dp[i][j] = max(dp[i-1][j] + cell[i][j], dp[i-1][j-1] + cell[i][j])

初始化 dp 数组:
都初始化为0即可。

确定遍历顺序:
从上往下遍历即可。

参考代码

n = int(input())
# cell 为每个位置的珠宝数目
cell = []
for i in range(n):
    cell.append(list(map(int, input().split())))
# dp[i][j] 表示位置 i,j 对应的珠宝最大数目
dp = [[0 for j in range(n)] for i in range(n)]
dp[0][0] = cell[0][0]
# 从上往下遍历
for i in range(n):
    for j in range(i+1):
        dp[i][j] = max(dp[i-1][j] + cell[i][j], dp[i-1][j-1] + cell[i][j])

# 最后一层的最大值
res = max(dp[-1])
print(res)

和最大子序列

题目:
时间限制:
1s

内存限制:
128MB

题目描述:
对于一个给定的长度为 N 的整数序列 A,它的“子序列”的定义是:A 中非空的一段连续的元素(整数)。你要完成的任务是,在所有可能的子序列中,找到一个子序列,该子序列中所有元素的和是最大的(跟其他所有子序列相比)。程序要求你输出这个最大值。

输入描述:
输入文件的第一行包含一个整数 N,第二行包含 N 个整数,表示 A
其中
1 < = N < = 100000
-10000 <= A[i] <= 10000

输出描述:
输出仅包含一个整数,表示你算出的答案。

样例输入:

5
3 -2 3 -5 4

样例输出:
4


解题思路

确定 dp 数组及其下标的含义:
dp[i] 表示序列 nums[:i+1] 的子序列的最大和。

确定递推公式:
dp[i] = max(dp[i-1]+nums[i], nums[i])

初始化 dp 数组:
初始化为 nums[0] 即可。

确定遍历顺序:
顺序遍历即可。

参考代码

n = int(input())
nums = list(map(int, input().split()))
print(nums[:1])
# dp[i] 表示序列 nums[:i+1] 的子序列的最大和
dp = [nums[0] for i in range(n)]
for i in range(1, len(nums)):
    dp[i] = max(dp[i-1]+nums[i], nums[i])
print(max(dp))

超级玛丽

题目:
时间限制:
1s

内存限制:
128MB

题目描述:
大家都知道" 超级玛丽" 是一个很善于跳跃的探险家,他的拿手好戏是跳跃,但它一次只能向前跳一步或两步。有一次,他要经过一条长为 n 的羊肠小道,小道中有 m 个陷阱,这些陷阱都位于整数位置,分别是 a 1 , a 2 , . . . . , a m a1,a2,...., am a1,a2,....,am,陷入其中则必死无疑。显然,如果有两个挨着的陷阱,则玛丽是无论如何也跳过不去的。
现在给出小道的长度 n,陷阱的个数及位置。求出玛丽从位置 1 开始,有多少种跳跃方法能到达胜利的彼岸(到达位置 n)。

输入描述:
第一行为两个整数 n,m
第二行为 m 个整数,表示陷阱的位置

数据规模和约定
40 >= n >= 3, m >= 1
n > m;
陷阱不会位于 1n

输出描述:
一个整数。表示玛丽跳到 n 的方案数

样例输入:

4 1
2

样例输出:
1


解题思路

确定 dp 数组及其下标的含义:
dp[i] 表示到达位置 i 的跳跃方法数。

确定递推公式:
当满足:index.count(i) == 0 即此处没有陷阱, dp[i] = dp[i-j] + dp[i]

初始化 dp 数组:
初始化为 0 即可。

确定遍历顺序:
顺序遍历即可。


参考代码

n, m = map(int, input().split())
index = list(map(int, input().split()))
# dp[i] 表示到达位置 i 的跳跃方法数
# dp[0] = 0 便于后续处理
dp = [0 for i in range(n+1)]
dp[1] = 1
for i in range(2, n+1):
    for j in [1, 2]:
        # 判断前两个位置是否有陷阱
        if index.count(i) == 0:
            dp[i] = dp[i-j] + dp[i]
print(dp[-1])

2^k进制数

题目:
时间限制:
1s

内存限制:
128MB

题目描述:
r r r 是个 2 k 2^k 2k 进制数,并满足以下条件:

  • r r r 至少是个 2 2 2 位的 2 k 2^k 2k 进制数。
  • 作为 2 k 2^k 2k 进制数,除最后一位外, r r r 的每一位严格小于它右边相邻的那一位。
  • r r r 转换为 2 2 2 进制数 q q q 后,则 q q q 的总位数不超过 w w w

在这里,正整数 k ( 1 ≤ k ≤ 9 ) k(1≤k≤9) k(1k9) w ( k < w ≤ 30000 ) w(kw(k<w30000) 是事先给定的。

问:满足上述条件的不同的 r r r 共有多少个?
我们再从另一角度作些解释:设 S S S 是长度为 w w w 的 01字符串(即字符串 S S S w w w01组成), S S S 对应于上述条件中的 q q q。将 S S S 从右起划分为若干个长度为 k k k 的段,每段对应一位 2 k 2^k 2k 进制的数,如果 S S S 至少可分成 2 2 2 段,则 S S S 所对应的二进制数又可以转换为上述的 2 k 2^k 2k 进制数 r r r

例:设 k = 3 , w = 7 k=3,w=7 k=3w=7。则 r r r 是个八进制数 ( 2 3 = 8 ) (2^3=8) (23=8)。由于 w = 7 w=7 w=7,长度为 7 的 01 字符串按 3位一段分,可分为 3 段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:
高位为16 个(即 12,13,14,15,16,17 ),高位为 25 个,…,高位为61个(即67 )。共 6+5+…+1=21 个。

3位数:
高位只能是1,第 2 位为 25 个(即123,124,125,126,127),第2位为34个,…,第 2 位为 61个(即 167)。共5+4+…+1=15个。
所以,满足要求的 r r r 共有 36个。

输入描述:
只有1行,为两个正整数,用一个空格隔开:
k k k w w w

输出描述:
1行,是一个正整数,为所求的计算结果,即满足条件的不同的 r r r 的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。
(提示:作为结果的正整数可能很大,但不会超过200位)

样例输入:
3 7
样例输出:
36


解题思路

确定 dp 数组及其下标的含义:
dp[i][j] 表示有 (i+1) 位数字,最高位数字是 j 时满足条件的数字个数。

确定递推公式:
j!=0dp[i][j] = dp[i-1][j+1]+dp[i-1][j+2]+dp[i-1][j+3]······
也就是说最高位不是0的时候,满足条件的数字个数是,第二高位的数字大于最高位的数字的情况的和。
j==0dp[i][j] = dp[i-1][j]+dp[i-1][j+1]+dp[i-1][j+2]+dp[i-1][j+3]······
如果最高位是 0,那么第二高位数字则可以取0。也就比上一个情况多加了个 dp[i-1][j]

初始化 dp 数组:
dp[0][j]=1 即只有一位数字时只有一种情况

确定遍历顺序:
顺序遍历即可。

此外注意最终结果的计算和处理,具体见代码。


参考代码

import math
k, w = map(int, input().split())
# rows, cols 为dp数组的行数和列数
rows, cols = w//k+1, 2**k
# i 是 2^k 进制下数字的位数
# j 是 每一位上可以取到的值
# dp[i][j] 表示有 (i+1) 位数字,最高位数字是 j 时满足条件的数字个数
dp = [[0 for j in range(cols)] for i in range(rows)]
# 初始化 res,为结果
res = 0

# dp 数组初始化
# dp[0][j] 表示有 1 位数字的情况
for j in range(cols):
    dp[0][j] = 1

# 递推
for i in range(1, rows):
    for j in range(cols):
        dp[i][j] = sum(dp[i-1][j+1:])
        if j == 0:
            dp[i][j] += dp[i-1][j]

# 计算最后的结果
if w%k == 0:
    # 此时最高位可以取 0 到 cols, 即最后一行所有情况都可以用
    res = sum(dp[-1])
else:
    # 此时最高位只能取 0 到 2**(w%k)-1
    res = sum(dp[-1][:2**(w%k)])

# 题目中要求位数 >= 2
# 需要减去只有一位数的情况
if w/k <= 1:
    res = 0
else:
    res -= 2**k
print(res)

你可能感兴趣的:(#,蓝桥杯Python组刷题日寄,蓝桥杯,python,动态规划)