同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。(* ̄rǒ ̄)
cs.LG 方向,今日共计61篇
[cs.LG]:
【1】 Testing Robustness Against Unforeseen Adversaries
标题:测试对不可预见的对手的鲁棒性
作者: Daniel Kang, Jacob Steinhardt
链接:https://arxiv.org/abs/1908.08016
【2】 QCNN: Quantile Convolutional Neural Network
标题:QCNN:分位数卷积神经网络
作者: Gábor Petneházi
链接:https://arxiv.org/abs/1908.07978
【3】 Estimation of perceptual scales using ordinal embedding
标题:基于序数嵌入的感知尺度估计
作者: Siavash Haghiri, Ulrike von Luxburg
链接:https://arxiv.org/abs/1908.07962
【4】 Enabling hyperparameter optimization in sequential autoencoders for spiking neural data
标题:在用于尖峰神经数据的顺序自动编码器中启用超参数优化
作者: Mohammad Reza Keshtkaran, Chethan Pandarinath
备注:submitted to NeurIPS2019
链接:https://arxiv.org/abs/1908.07896
【5】 Representation Disentanglement for Multi-task Learning with application to Fetal Ultrasound
标题:多任务学习的表征解缠及其在胎儿超声中的应用
作者: Qingjie Meng, Bernhard Kainz
链接:https://arxiv.org/abs/1908.07885
【6】 Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection
标题:生成性对抗网络中的泛化:一个隐私保护的新视角
作者: Bingzhe Wu, Jun Zhou
链接:https://arxiv.org/abs/1908.07882
【7】 Federated Learning: Challenges, Methods, and Future Directions
标题:联邦学习:挑战、方法和未来方向
作者: Tian Li, Virginia Smith
链接:https://arxiv.org/abs/1908.07873
【8】 Multi-hypothesis classifier
标题:多假设分类器
作者: Sayantan Sengupta, Sudip Sanyal
链接:https://arxiv.org/abs/1908.07857
【9】 CUDA optimized Neural Network predicts blood glucose control from quantified joint mobility and anthropometrics
标题:CUDA优化神经网络根据量化的关节活动性和人体测量学预测血糖控制
作者: Sterling Ramroach, Ajay Joshi
链接:https://arxiv.org/abs/1908.07847
【10】 Real-time Person Re-identification at the Edge: A Mixed Precision Approach
标题:边缘实时人员重新识别:一种混合精度方法
作者: Mohammadreza Baharani, Hamed Tabkhi
备注:This is a pre-print of an article published in International Conference on Image Analysis and Recognition (ICIAR 2019), Lecture Notes in Computer Science. The final authenticated version is available online at this https URL
链接:https://arxiv.org/abs/1908.07842
【11】 Exploring Offline Policy Evaluation for the Continuous-Armed Bandit Problem
标题:探讨连续武装强盗问题的离线策略评估
作者: Jules Kruijswijk, Maurits Kaptein
链接:https://arxiv.org/abs/1908.07808
【12】 Decentralized Federated Learning: A Segmented Gossip Approach
标题:分散的联邦学习:一种分段的八卦方法
作者: Chenghao Hu, Zhi Wang
备注:Accepted to the 1st International Workshop on Federated Machine Learning for User Privacy and Data Confidentiality (FML'19)
链接:https://arxiv.org/abs/1908.07782
【13】 Denoising and Verification Cross-Layer Ensemble Against Black-box Adversarial Attacks
标题:针对黑盒对抗攻击的跨层集成消噪与验证
作者: Ka-Ho Chow, Ling Liu
链接:https://arxiv.org/abs/1908.07667
【14】 AdaCliP: Adaptive Clipping for Private SGD
标题:AdaCliP:私有SGD的自适应裁剪
作者: Venkatadheeraj Pichapati, Sanjiv Kumar
备注:18 pages
链接:https://arxiv.org/abs/1908.07643
【15】 P2L: Predicting Transfer Learning for Images and Semantic Relations
标题:P2L:预测图像和语义关系的迁移学习
作者: Bishwaranjan Bhattacharjee, Brian Belgodere
链接:https://arxiv.org/abs/1908.07630
【16】 Developing Creative AI to Generate Sculptural Objects
标题:开发创造性人工智能以生成雕塑对象
作者: Songwei Ge, Barnabas Poczos
备注:In the Proceedings of International Symposium on Electronic Art (ISEA 2019)
链接:https://arxiv.org/abs/1908.07587
【17】 Fast-rate PAC-Bayes Generalization Bounds via Shifted Rademacher Processes
标题:基于移位Rademacher过程的快速PAC-Bayes泛化界
作者: Jun Yang, Daniel M. Roy
备注:18 pages
链接:https://arxiv.org/abs/1908.07585
【18】 Robust Graph Neural Network Against Poisoning Attacks via Transfer Learning
标题:基于转移学习的抗中毒攻击的鲁棒图神经网络
作者: Xianfeng Tang, Suhang Wang
链接:https://arxiv.org/abs/1908.07558
【19】 Refactoring Neural Networks for Verification
标题:用于验证的重构神经网络
作者: David Shriver, Matthew B. Dwyer
链接:https://arxiv.org/abs/1908.08026
【20】 Mapping of Local and Global Synapses on Spiking Neuromorphic Hardware
标题:局部和全局突触在尖峰神经形态硬件上的映射
作者: Anup Das, Siebren Schaafsma
备注:17 pages, 7 figures, published in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE)
链接:https://arxiv.org/abs/1908.08024
【21】 Reservoir-size dependent learning in analogue neural networks
标题:模拟神经网络中的水库规模相关学习
作者: Xavier Porte, Daniel Brunner
链接:https://arxiv.org/abs/1908.08021
【22】 Spiking Neural Networks and Online Learning: An Overview and Perspectives
标题:尖峰神经网络与在线学习:综述与展望
作者: Jesus L. Lobo, Nikola Kasabov
链接:https://arxiv.org/abs/1908.08019
【23】 Exploiting a Stimuli Encoding Scheme of Spiking Neural Networks for Stream Learning
标题:开发用于流学习的尖峰神经网络的刺激编码方案
作者: Jesus L. Lobo, Javier Del Ser
链接:https://arxiv.org/abs/1908.08018
【24】 BGADAM: Boosting based Genetic-Evolutionary ADAM for Convolutional Neural Network Optimization
标题:BGADAM:用于卷积神经网络优化的基于Boosting的遗传进化ADAM
作者: Jiyang Bai, Jiawei Zhang
链接:https://arxiv.org/abs/1908.08015
【25】 Evolutionary Computation, Optimization and Learning Algorithms for Data Science
标题:数据科学的进化计算、优化和学习算法
作者: Farid Ghareh Mohammadi, Hamid R. Arabnia
链接:https://arxiv.org/abs/1908.08006
【26】 Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics
标题:基于约束遗传规划的实验物理一致性特征构造
作者: Noëlie Cherrier, Franck Sabatié
备注:Accepted in this version to CEC 2019
链接:https://arxiv.org/abs/1908.08005
【27】 A tree-based radial basis function method for noisy parallel surrogate optimization
标题:一种基于树的带噪声并行代理优化的径向基函数法
作者: Chenchao Shou, Matthew West
链接:https://arxiv.org/abs/1908.07980
【28】 Assessing the Impact of a User-Item Collaborative Attack on Class of Users
标题:评估用户-项目协作攻击对用户类别的影响
作者: Yashar Deldjoo, Felice Antonio Merra
备注:5 pages, RecSys2019, The 1st Workshop on the Impact of Recommender Systems with ACM RecSys 2019
链接:https://arxiv.org/abs/1908.07968
【29】 DISCo for the CIA: Deep learning, Instance Segmentation, and Correlations for Calcium Imaging Analysis
标题:CIA的DISCO:深入学习,实例分割和钙成像分析的相关性
作者: Elke Kirschbaum, Fred A. Hamprecht
链接:https://arxiv.org/abs/1908.07957
【30】 Spatio-Temporal Representation with Deep Neural Recurrent Network in MIMO CSI Feedback
标题:MIMO CSI反馈中深度神经递归网络的时空表示
作者: Xiangyi Li, Huaming Wu
链接:https://arxiv.org/abs/1908.07934
【31】 Design Space of Behaviour Planning for Autonomous Driving
标题:自主驾驶行为规划的设计空间
作者: Marko Ilievski, Krzysztof Czarnecki
链接:https://arxiv.org/abs/1908.07931
【32】 Data Management for Causal Algorithmic Fairness
标题:因果算法公平的数据管理
作者: Babak Salimi, Dan Suciu
备注:arXiv admin note: text overlap with arXiv:1902.08283
链接:https://arxiv.org/abs/1908.07924
【33】 Mining Association Rules in Various Computing Environments: A Survey
标题:各种计算环境下的关联规则挖掘综述
作者: Sudhakar Singh, P. K. Mishra
链接:https://arxiv.org/abs/1908.07918
【34】 Evaluating Defensive Distillation For Defending Text Processing Neural Networks Against Adversarial Examples
标题:评估防御蒸馏以防御文本处理神经网络对抗实例
作者: Marcus Soll, Stefan Wermter
备注:Published at the International Conference on Artificial Neural Networks (ICANN) 2019
链接:https://arxiv.org/abs/1908.07899
【35】 Learning Structured Twin-Incoherent Twin-Projective Latent Dictionary Pairs for Classification
标题:用于分类的学习结构双非相干双投射潜在字典对
作者: Zhao Zhang, Meng Wang
备注:Accepted by ICDM 2019 as a regular paper
链接:https://arxiv.org/abs/1908.07878
【36】 Semi-supervised Sequence Modeling for Elastic Impedance Inversion
标题:弹性阻抗反演的半监督序列建模
作者: Motaz Alfarraj, Ghassan AlRegib
备注:A manuscript in Interpretation. arXiv admin note: text overlap with arXiv:1905.13412
链接:https://arxiv.org/abs/1908.07849
【37】 A novel text representation which enables image classifiers to perform text classification, applied to name disambiguation
标题:一种新颖的文本表示,其使图像分类器能够执行文本分类,应用于名称消歧
作者: Stephen M. Petrie, T'Mir D. Julius
链接:https://arxiv.org/abs/1908.07846
【38】 Similarity Learning for Authorship Verification in Social Media
标题:社交媒体中用于作者身份验证的相似性学习
作者: Benedikt Boenninghoff, Dorothea Kolossa
备注:5 pages, 3 figures, 1 table, presented on ICASSP 2019 in Brighton, UK
链接:https://arxiv.org/abs/1908.07844
【39】 Parsimonious Morpheme Segmentation with an Application to Enriching Word Embeddings
标题:简约语素切分及其在丰富词嵌入中的应用
作者: Ahmed El-Kishky, Jiawei Han
链接:https://arxiv.org/abs/1908.07832
【40】 A Multi-level Neural Network for Implicit Causality Detection in Web Texts
标题:一种用于Web文本中隐含因果关系检测的多级神经网络
作者: Shining Liang, Sen Wang
链接:https://arxiv.org/abs/1908.07822
【41】 An Empirical Evaluation of Multi-task Learning in Deep Neural Networks for Natural Language Processing
标题:用于自然语言处理的深层神经网络多任务学习的实证评价
作者: Jianquan Li, Liqun Ma
链接:https://arxiv.org/abs/1908.07820
【42】 Rating for Parents: Predicting Children Suitability Rating for Movies Based on Language of the Movies
标题:家长评分:根据电影语言预测儿童对电影的适宜性评分
作者: Mahsa Shafaei, Thamar Solorio
链接:https://arxiv.org/abs/1908.07819
【43】 Disentangling Latent Emotions of Word Embeddings on Complex Emotional Narratives
标题:复杂情感叙事中词嵌入潜在情感的消解
作者: Zhengxuan Wu, Yueyi Jiang
备注:9 pages, submitted and accepted by NLP conference 2019
链接:https://arxiv.org/abs/1908.07817
【44】 Importance of spatial predictor variable selection in machine learning applications -- Moving from data reproduction to spatial prediction
标题:空间预测变量选择在机器学习应用中的重要性-从数据复制到空间预测
作者: Hanna Meyer, Thomas Nauss
链接:https://arxiv.org/abs/1908.07805
【45】 Dialog State Tracking with Reinforced Data Augmentation
标题:使用增强数据增强的对话状态跟踪
作者: Yichun Yin, Qun Liu
链接:https://arxiv.org/abs/1908.07795
【46】 Boosting the Rating Prediction with Click Data and Textual Contents
标题:利用点击数据和文本内容提升评级预测
作者: ThaiBinh Nguyen, Atsuhiro Takasu
链接:https://arxiv.org/abs/1908.07749
【47】 Restricted Recurrent Neural Networks
标题:受限递归神经网络
作者: Enmao Diao, Vahid Tarokh
链接:https://arxiv.org/abs/1908.07724
【48】 Improved Cardinality Estimation by Learning Queries Containment Rates
标题:通过学习查询包含率改进基数估计
作者: Rojeh Hayek, Oded Shmueli
链接:https://arxiv.org/abs/1908.07723
【49】 A Novel Privacy-Preserving Deep Learning Scheme without Using Cryptography Component
标题:一种新的不使用密码学组件的隐私保护深度学习方案
作者: Chin-Yu Sun, TingTing Hwang
链接:https://arxiv.org/abs/1908.07701
【50】 Asymmetric Non-local Neural Networks for Semantic Segmentation
标题:用于语义分割的非对称非局部神经网络
作者: Zhen Zhu, Xiang Bai
备注:To appear in ICCV 2019
链接:https://arxiv.org/abs/1908.07678
【51】 Survey on Deep Neural Networks in Speech and Vision Systems
标题:语音和视觉系统中的深度神经网络综述
作者: Mahbubul Alam, Khan M. Iftekharuddin
链接:https://arxiv.org/abs/1908.07656
【52】 Understanding and Partitioning Mobile Traffic using Internet Activity Records Data -- A Spatiotemporal Approach
标题:利用互联网活动记录数据理解和划分移动流量-一种时空方法
作者: Kashif Sultan, Zhongshan Zhang
备注:2019 28th Wireless and Optical Communications Conference (WOCC)
链接:https://arxiv.org/abs/1908.07653
【53】 Saccader: Improving Accuracy of Hard Attention Models for Vision
标题:Saccader:提高视觉硬注意模型的准确性
作者: Gamaleldin F. Elsayed, Quoc V. Le
链接:https://arxiv.org/abs/1908.07644
【54】 How to gamble with non-stationary -armed bandits and have no regrets
标题:如何与非固定 武装的强盗赌博,并且没有遗憾
作者: Vakeriy Avanesov
链接:https://arxiv.org/abs/1908.07636
【55】 Detecting Gas Vapor Leaks Using Uncalibrated Sensors
标题:使用未校准传感器检测气体蒸气泄漏
作者: Diaa Badawi, A. Enis Çetin
链接:https://arxiv.org/abs/1908.07619
【56】 Reinforcement Learning is not a Causal problem
标题:强化学习不是因果问题
作者: Mauricio Gonzalez-Soto, Felipe Orihuela Espina
链接:https://arxiv.org/abs/1908.07617
【57】 Automatic and Simultaneous Adjustment of Learning Rate and Momentum for Stochastic Gradient Descent
标题:随机梯度下降学习速率和动量的自动同时调整
作者: Tomer Lancewicki, Selcuk Kopru
链接:https://arxiv.org/abs/1908.07607
【58】 Learning document embeddings along with their uncertainties
标题:学习文档嵌入及其不确定性
作者: Santosh Kesiraju, Suryakanth V Gangashetty
链接:https://arxiv.org/abs/1908.07599
【59】 Phrase Localization Without Paired Training Examples
标题:没有成对训练示例的短语本地化
作者: Josiah Wang, Lucia Specia
备注:Accepted for oral presentation at the IEEE/CVF International Conference on Computer Vision (ICCV) 2019
链接:https://arxiv.org/abs/1908.07553
【60】 Multi-Modal Recognition of Worker Activity for Human-Centered Intelligent Manufacturing
标题:以人为中心的智能制造中工人活动的多模态识别
作者: Wenjin Tao, Zhaozheng Yin
链接:https://arxiv.org/abs/1908.07519
【61】 AI for Earth: Rainforest Conservation by Acoustic Surveillance
标题:地球的人工智能:通过声音监测保护雨林
作者: Yuan Liu, Jiebo Luo
备注:Accepted to KDD2019 Workshop on Data Mining and AI for Conservation
链接:https://arxiv.org/abs/1908.07517
翻译:腾讯翻译君